
Win[afrho]

MANUALE

A cura di:

Oss. Astronomico

Geminiano Montanari, MPC107

Cavezzo MO - Italy

INTRODUZIONE

Questo manuale è un aggiornamento ad ampliamento delle precedenti edizioni, vuole offrire una panoramica più ampia possibile sull'utilizzo del software *Winafrho* realizzato da Roberto Trabatti nell'ambito del Progetto *CARA* sulla fotometria cometaria.

Lo scopo è consentire di effettuare misurazioni fotometriche secondo i protocolli definiti dal *CARA*, e raccogliere i dati in un formato standard predefinito.

Il software, come il **Progetto CARA**, è in costante evoluzione grazie ai contributi e le esperienze degli osservatori che vi partecipano. Il presente manuale definisce lo stato dell'arte raggiunto alla data dell'ultima revisione e potrà essere arricchito da ulteriori aggiornamenti.

Il software *Winafrho* è distribuito gratuitamente agli osservatori e collaboratori, il suo utilizzo è vincolato alla partecipazione e alle finalità del Progetto *CARA*.

Il manuale affronta anche diverse problematiche legate all'astronomia digitale, all'osservazione di comete e oggetti asteroidali che si trasformano in comete o pseudo comete con elevato moto proprio. La variabilità delle situazioni richiede sempre una grande attenzione da parte dell'osservatore ed è facile inciampare in qualche imprevisto inatteso. In questi casi sarà preziosa sia l'esperienza e la consulenza di osservatori esperti per giungere a padroneggiare la tecnica in tutte le situazioni.

Giannantonio Milani Responsabile sezione comete UAI.

INDICE

- 6 Reperimento e installazione di Winafrho
- 7 Prima di iniziare prepariamo le immagini
- 8 Nota importante (seeing e sfocature)
- 10 Uso del software

32 APPENDICI

- 34 View Orbit (in Winafrho)
- 35 Dust Model (in Winafrho)
- 36 Calibrare le immagini con Astroart
- 46 Tecniche di misurazione
- 49 Misurare un asteroide e/o una nuova cometa
- 52 La curva ideale, questione anche di seeing
- 57 La dipendenza della misura dal background
- 61 Inserire elementi orbitali in Winafrho
- 63 La qualità dell'immagine (posterizzazione)
- 69 Cosa è $Af\rho$, semplificato in Afrho?.
- 70 © 2007 Progetto CARA Cometary Archive for Amateur Astronomers
- 71 I filtri a banda stretta per le comete.
- 74 Meglio misurare sulla Media, Mediana o sul Sigma.
- 80 s/n, cosa vuol dire Rapporto Segnale Rumore.
- 84 Quante immagini occorrono per una buona misura?.
- 88 I telescopi remoti e le misure.
- 91 Stelle/Comete e saturazione del nucleo (Astroart).
- 94 Il pretrattamento.
- 96 Il Flat Field
- 103 Metodo di misurazione, il filtro delle stelle di tipo solare e il B-V.
- 107 Metodo di misurazione, il filtro delle magnitudini (V mag. min e max).
- 110 Misurare comete luminose e molto luminose.
- 111 Tutte le comete sono misurabili?.
- 113 Meglio misurare con Flat o senza Flati?.
- 116 Effemeridi dall'MPC e Formule utili.
- 118 Misurare immagini ad alta risoluzione (telescopio da 2 metri).
- 120 Come riconoscere immagini FITS a 16 o 32 bit.
- 121 I filtri per le elaborazioni della chioma (RW, MCM e LS).
- 129 Allineare immagini di comete e riallineare quelle stellari con stelle quasi invisibili.
- 136 AFRHO con stelle di riferimento esterne al campo inquadrato.
- 147 Misurare Afrho su una singola stella.
- 156 Misurare con CCD a colori.
- 160 Cometa 29P, selezionare la finestra corretta.
- 162 Cometa 29P, un caso particolare.
- 166 Cometa 29P, un primo risultato.

168 - NOTE FINALI

INFORMAZIONI – WINAFRHO - DA SAPERE - AVVERTENZE/Clausole di utilizzo dei dati - CONTRIBUTI IMMAGINI UTILIZZATE – FAQ - LINK DI COMETE UTILI

Reperimento e installazione di Winafrho.

La distribuzione di Winafrho spetta al gruppo del **CARA** che fornisce all'interessato l'eseguibile di installazione. I file sono in un repository da dove vengono prelevati e inviati ai partecipanti alle campagne osservative. Come accennato in **(NOTE FINALI)** bisogna avere il codice **CARA** prima di inviare misure.

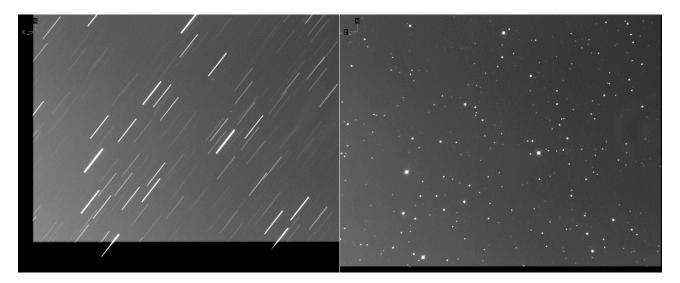
In realtà il sw si compone di tre programmi; l'installazione ufficiale ferma alla versione **2.6.2** (Winafro26.2x86setup.msi) che contiene al suo interno una volta installato due software, (Wafrho1.exe) e (Wafrho1Senddata.exe).

Wafrho1.exe è il software delle misure vero e proprio, mentre **Wafrho1Senddata.exe** è il programma che viene lanciato all'interno di Winafrho e che si occupa dell'invio delle misure verso il DataBase del CARA. Una lista dei file è nella sezione FAQ (domande frequenti) in fondo al manuale.

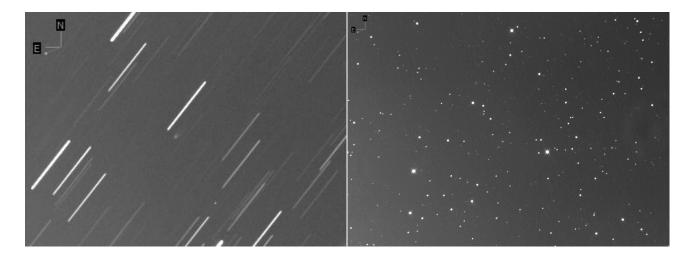
E' inoltre disponibile una semplice applicazione di nome **CaraGraphPlot** che è un applicativo che permette di navigare, visualizzare e scaricare i dati dal **DataBase comete CARA**. Non c'è bisogno di installazione in quanto è sufficiente creare una cartella sul PC (che può avere lo stesso nome) e scompattarvi il file ZIP **(CaraGraphPlot.zip)**. Quindi lanciare l'eseguibile **CaraGraphPlot.exe**.

CaraGraphPlot.exe 3.563.008 29/11/2019 09:52 defaultn.bmp 1.155.054 24/10/2017 16:33 AxInterop.MSChart20Lib.dll 52.224 16/10/2017 14:59 Interop.MSChart20Lib.dll 132.096 16/10/2017 14:59 Interop.MSDATASRC.dll 4.096 16/10/2017 14:59 Microsoft.VisualBasic.PowerPacks.Vs.dll 259.464 19/09/2017 12:25	Elenco dei file:			
AxInterop.MSChart20Lib.dll 52.224 16/10/2017 14:59 Interop.MSChart20Lib.dll 132.096 16/10/2017 14:59 Interop.MSDATASRC.dll 4.096 16/10/2017 14:59	CaraGraphPlot.exe	3.563.008	29/11/2019	09:52
Interop.MSChart20Lib.dll 132.096 16/10/2017 14:59 Interop.MSDATASRC.dll 4.096 16/10/2017 14:59	defaultn.bmp	1.155.054	24/10/2017	16:33
Interop.MSDATASRC.dll 4.096 16/10/2017 14:59	AxInterop.MSChart20Lib.dll	52.224	16/10/2017	14:59
	Interop.MSChart20Lib.dll	132.096	16/10/2017	14:59
Microsoft.VisualBasic.PowerPacks.Vs.dll 259.464 19/09/2017 12:25	Interop.MSDATASRC.dll	4.096	16/10/2017	14:59
	Microsoft.VisualBasic.PowerPacks	.Vs.dll 259.464	19/09/2017	12:25

Nell'indisponibilità del software CaraGraphPlot.exe all'indirizzo:


http://62.149.222.146:9999/cara/CaraAnalisysGuide.php è disponibile una applicazione web che si collega al DataBase del CARA.

Per gli aggiornamenti è normalmente sufficiente sostituire e/o sovrascrivere i file **Wafrho1.exe**, **CaraGraphPlot.exe** e **Wafrho1Senddata.exe** con l'ultima versione.


Prima di iniziare: prepariamo le immagini.

Winafrho per funzionare correttamente richiede che le immagini vengano preparate in un certo modo. Innanzitutto devono essere rigorosamente delle **16 bit intero (da 0 a 65535 livelli)**, solo **medie** o **medie-sigma, NO** somme che porterebbero la dinamica al di fuori del range 0, 65535 (16bit). Inoltre essendo immagini provenienti dall'inseguimento di oggetti che si muovono (a volte anche velocemente) bisogna eliminare bordi dell'immagine. E'obbligatoria la calibrazione astrometrica dell'immagine allineata sulle stelle. L'immagine della cometa non richiede l'astrometrizzazione anche se potrebbe fare comodo.

Vediamo un esempio:

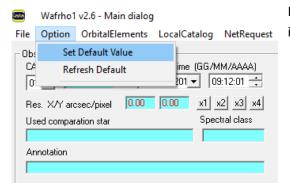
Sopra a sinistra immagine allineata sulla cometa, a destra allineata sulle stelle. In entrambi i casi notiamo bande/bordi neri dovute allo spostamento nell'allineamento. Questi bordi andranno eliminati con un ritaglio (crop) vedi immagini sotto.

NOTA:

Nel caso ci fossero dubbi su come riconoscere file FITS, nelle appendici di questo manuale c'è una voce specifica.

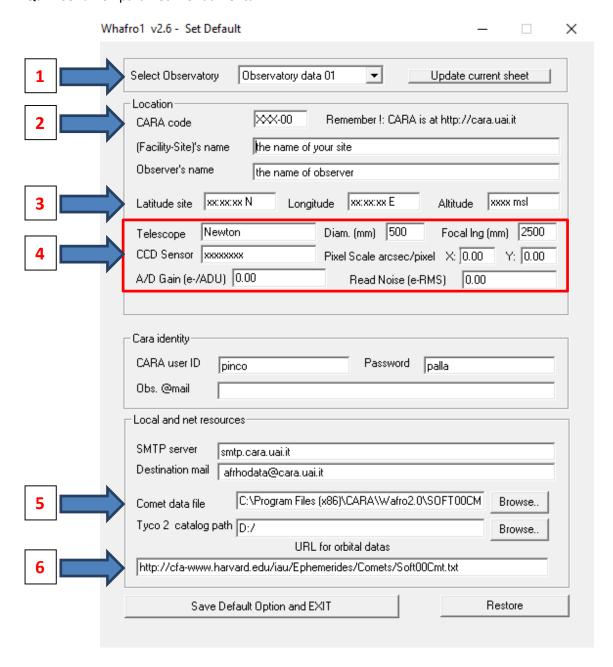
Nota importante:

Le immagini che si realizzano devono sottostare a una qualità di ripresa non banale, per esempio il fuoco andrà curato nel migliore dei modi, la misura Afrho è molto sensibile alle variazioni di luminosità della cometa, magari dovute a una sfocatura, mentre per le stelle l'eventuale sfocatura risulta identica a tutte, sulle comete no. Sfocando una cometa si impasta tutto e non si è più in grado di discriminare cosa si misura.

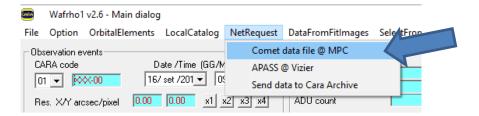

Se c'è una variazione dovuta a maggiore produzione di polveri e gas questa viene annegata nel totale e si potrà (forse) vederla solo quando la nube si espanderà molto (tempi scala di molte ore, forse 10-20 ore). Molto più efficace Afrho su immagini con un elevato S/N dove è possibile discriminare anche l'estensione ed espansione della nube. Una cometa è già un oggetto esteso, utilizzare immagini sfuocate è sbagliato.

Afrho con il defocus (sfocatura) non può che peggiorare e perdere informazioni (ad esempio perdi l'andamento medio del profilo). Per avere una precisione elevata, oltre ad avere una buona stella fotometrica, occorre sempre un elevato s/n (rapporto segnale rumore). Nel nostro caso è la posa, il diametro strumentale (molto importante) e la luminosità della cometa.

Turbolenza, sfocature o cattivo inseguimento – *sottostimano* - nelle finestre più piccole la nostra misura Afrho. Bisogna che le nostre immagini siano quanto più a fuoco possibile.

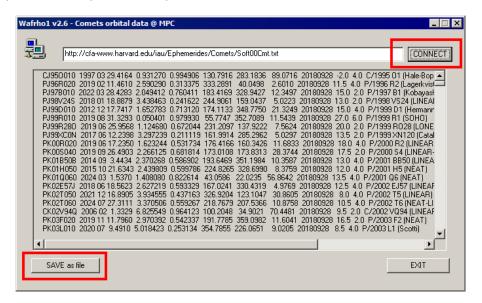


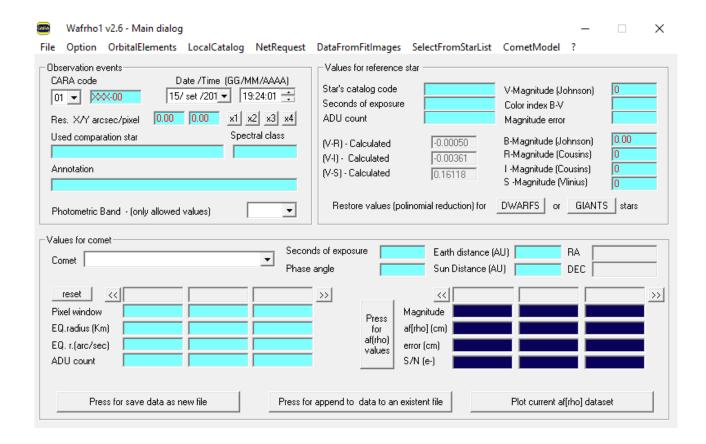
USO DEL SOFTWARE


Iniziamo con l'inserire una serie di parametri che vanno impostati dal Menù [Option] - [Set default Value].

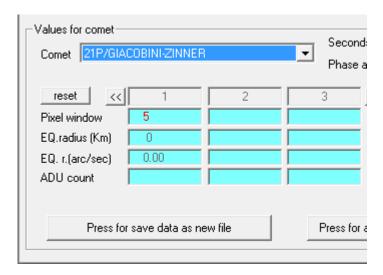
Qui inseriamo i parametri fondamentali

- 1. Select Observatory: Parametri dell'osservatorio (abbiamo la possibilità di configurarne 12).
- 2. CARA code: Codice dell'osservatore, (viene attribuito dallo staff del CARA dopo richiesta). Si possono avere più codici CARA, per esempio se si usano telescopi diversi (remotizzati). Essi verranno dati all'osservatore con un progressivo, tipo: FACO1, FACO2, ecc..., inoltre si possono dare a Osservatori astronomici, dove diverse persone possono riprendere e misurare, es. l'Oss. di CAVEZZO ha codice CAVOO.
- 3. Latitude Longitude Altitude, site: Latitudine Longitudine e Altitudine dell'osservatorio
- 4. Dati Telescope: Sono i dati del nostro telescopio e del CCD, che insieme ai dati A/D Gain (e./ADU) e Read Noise (e-RMS) servono per calcolare il rapporto segnale-rumore (che però fino ad oggi dicembre 2019 non è mai stato inserito nel DataBase). Molto importante è l'inserimento dei Pixel Scale (arc-sec/pixel). Per non fare confusione si consiglia di usare gli stessi arco-secondi della sessione, anche se Winafrho mette a disposizione i pulsanti per cambiare il binning.
- 5. Comet data file: Cartella da dove recuperare i parametri orbitali delle comete sul PC. ATTENZIONE: a volte può succedere che nel campo sparisca il percorso del file comete, basta riselezionare il percorso con [Browse].
- 6. Url for orbital datas: Link dove cercare il file dei parametri orbitali delle comete in internet.

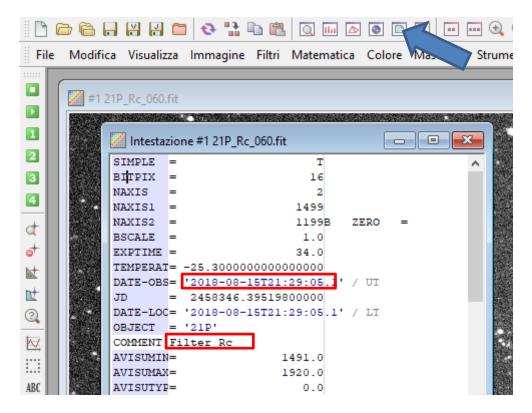

I dati orbitali li andiamo a cercare attraverso una routine (NetReguest – Comet data file @ MPC)



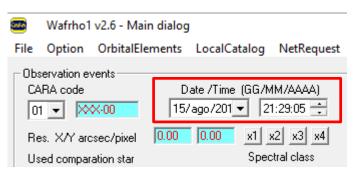
Mi connetto e salvo il file nella directory di installazione di Winafrho (attenzione ogni tanto l'indirizzo può cambiare).


In alternativa scaricare manualmente il file dal Minor Planet Center all'indirizzo https://www.minorplanetcenter.net/iau/MPCORB/CometEls.txt e salvare il file all'interno dell'installazione di WinAfrho.

Una volta completato il riempimento dei parametri fondamentali torniamo nella schermata iniziale.



Scegliamo da menù la cometa che vogliamo misurare.



Da Astroart o da altri software astronomici vado a prendere le informazioni sulla ripresa.

ATTENZIONE: I'ora della ripresa DEVE essere in Tempo Universale (UT).

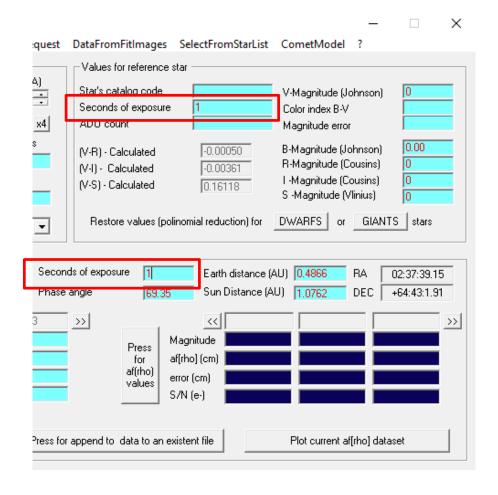
Nell'esempio: 2018-08-15 alle ore 21:29:05 e le inserisco negli appositi campi in WinAfrho.

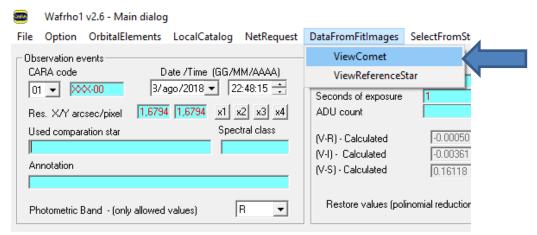
Quando riprendiamo potrebbe succedere che per le ragioni più varie si debba cambiare il binning.

ATTENZIONE: ricordiamocelo nel caso i dati inseriti nella configurazione fossero quelli di un binning differente. Winafrho propone le scelte maggiormente utilizzate.

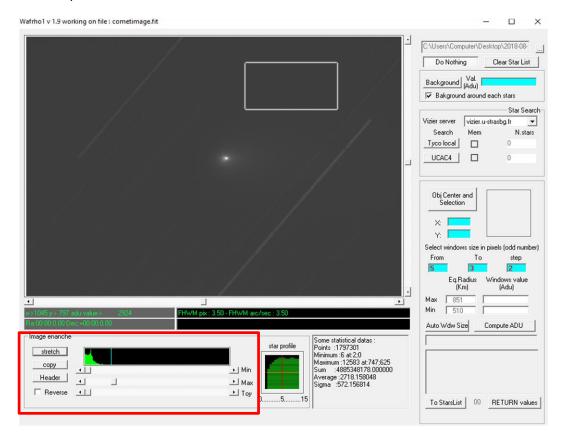
Qua scelgo la banda fotometrica, normalmente le immagini andrebbero fatte utilizzando il filtro **R** fotometrico (*Johnson-Cousins*), interessante e anche l'utilizzo del filtro **I** (*Cousins*). Per comete luminose è anche indicato il filtro a banda stretta da **647 nm/FWHM 10 nm**, molto più selettivo e che isola una regione spettrale del continuo escludendo emissioni gassose. Se usiamo il **647** selezioniamo la banda **S** (*Vilnius*). Se l'oggetto è molto debole e non usiamo filtri (*clear*), dobbiamo selezionare la banda **Ru** se usiamo CCD con chip Kodak, **Vu** se usiamo chip Sony. Se abbiamo un set di filtri **SLOAN** usiamo l'(**r**) e in winafrho selezioniamo la banda **R.**

La banda **V** è raramente utilizzata perché spesso non rileva solo polveri ed è anche fortemente contaminata da emissioni gassose (*in particolare* **C2**). In qualche caso può essere utilizzata su comete che si trovano a grande distanza dal Sole dove, essendo le emissioni molto deboli o assenti, osserviamo in pratica solo la luce solare riflessa dalle polveri.

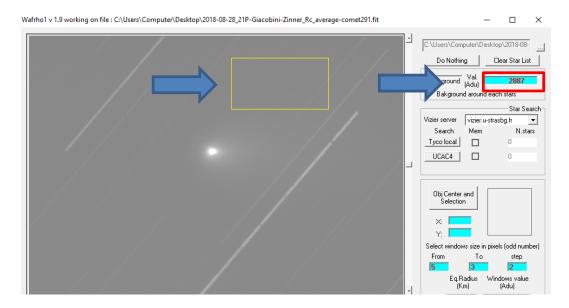

La banda **Bc** (*blue continuum*) è stata utilizzata per ora solo a livello sperimentale con filtri a banda stretta commerciali con caratteristiche vicine agli standard professionali dei filtri **HB** e **IHW**.

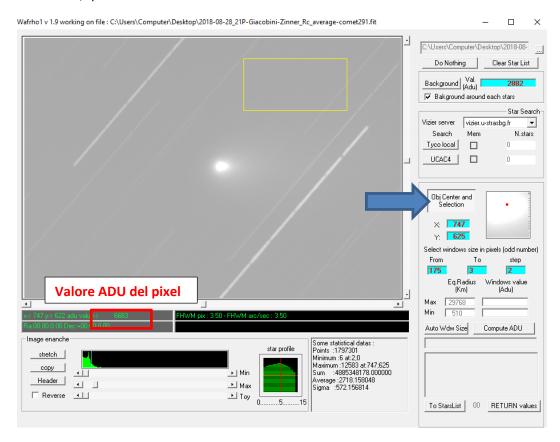

E' da notare che i tempi di esposizione con un filtro **R** (ad esempio) possono essere fino a **3 volte maggiori** per raggiungere un SNR similare a immagini non filtrate.

I tempi di esposizione sono importanti, attenzione che se la ripresa del campo delle stelle di confronto è diversa dalle immagini della cometa occorre digitarli correttamente alla voce [Values for reference star] – [Seconds of exposure] per esempio: 120 per l'immagine delle stelle di confronto e in [Value for comete] - [Seconds of exposure] per esempio 90 per le immagini della cometa. Più spesso capita che i tempi siano identici, in questo caso per semplicità si può mettere 1 per i tempi di esposizione nelle celle.

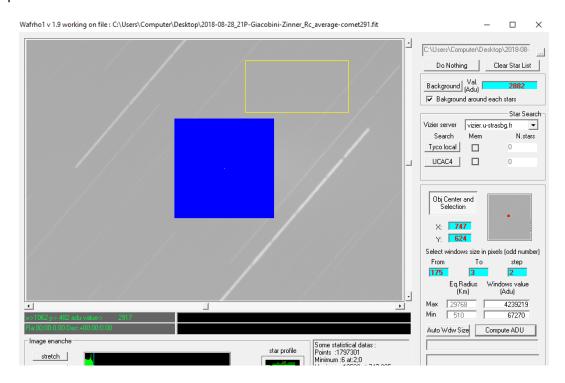

Nell'esempio sotto mettiamo 1 come rapporto di esposizione.

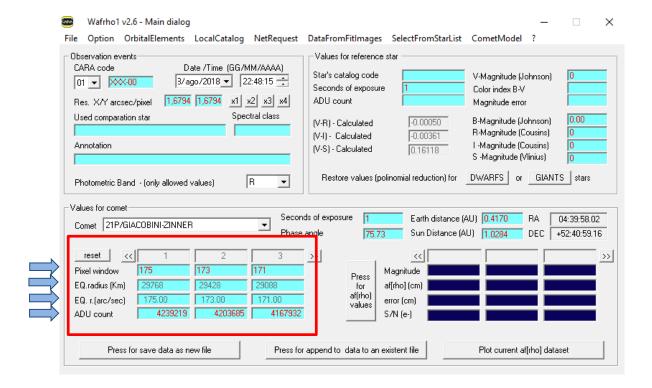
Ora possiamo caricare il frame della cometa (NOTA: il file deve essere a 16bit intero)


A questo punto dobbiamo rilevare la luminosità della cometa calcolata in ADU (contando sostanzialmente i fotoni che emette).


Per fare questo devo sottrarre il valore del fondo cielo, la cometa ha una luminosità, ma anche il fondo cielo ha una sua luminosità e quindi a noi non interessa la cometa più fondo cielo, invece ci interessa la cometa senza il contributo del fondo cielo. Quindi una volta attivato il tasto [Background] vado a prendere una zona dell'immagine nei pressi della cometa, ma ben al di fuori della chioma o della coda, e vi costruisco il mio quadrato e/o rettangolo ottenendo il valore del fondo cielo (nell'esempio 2887).

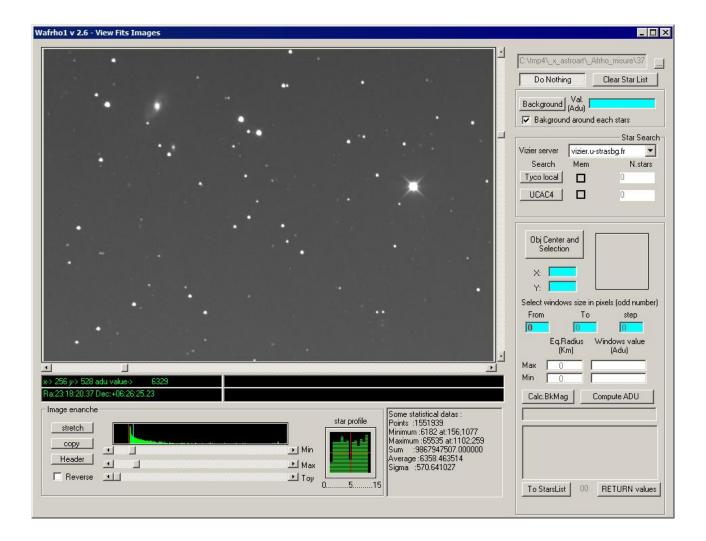
NOTA: Per migliorare la visualizzazione dell'immagine, sotto e alla sinistra dell'istogramma sono presenti cursori e pulsanti atti alla modifica della visualizzazione, inoltre l'immagine della cometa non richiede che sia calibrata astrometricamente con le WCS.


Volendo possiamo fare una verifica con Astroart o altri software prendendo la stessa immagine e creando una zona simile a quella fatta in WinAfrho andando poi a visualizzare il Background nei menù di statistiche, se i valori sono in linea allora siamo sicuri di aver fatto un buon lavoro di sottrazione del fondo cielo.


Dato il fondo cielo vado a misurare quella che è la luminosità della cometa, quindi attivo il tasto [Obi Center and Selection], poi vado a selezionare con il mouse il punto più luminoso che dovrebbe coincidere con il centro della cometa, quindi do il click.

In funzione del parametro finale, e tenendo conto automaticamente della scala immagine e delle condizioni geometriche, WinAfrho mi propone di default una serie di finestre dove andrò a fare la misura, in questo caso una finestra di raggio da 175 pixel a 3 pixel ogni 2 pixel, quindi se clicco su [Compute ADU] praticamente mi si copre tutta la zona della cometa.

Una volta completata questa operazione posso cliccare sul pulsante [RETURN values] che mi ritorna i valori delle varie finestre che vengono riportati nelle celle indicate.



Qui vengono riportate le finestre con le misurazioni:

- 1. il raggio della finestra (Pixel Window).
- 2. l'equivalente raggio in Km (EQ.radius Km).
- 3. l'equivalente in arc/sec (EQ. r.(arc/sec).
- 4. i fotoni che ha misurato (in realtà è per ogni pixel la somma del valore ADU che va da 0 a 65000 sottratta dal fondo cielo (ADU count).

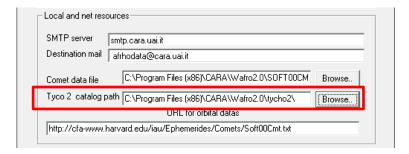
Arrivati a questo carichiamo l'immagine di riferimento delle stelle che vado ad utilizzare. Vado nel menu e clicco su [DataFromFitImages] – [ViewReferenceStar].

L'immagine delle stelle precedentemente calibrata e rigorosamente a **(16bit intero)** ci consente quando passo con il mouse sull'immagine di visualizzare i valori di **ascensione retta** e **declinazione** che servono a WinAfrho per cercare stelle che abbiano una luminosità simile a quella del Sole (*B-V compreso fra 0,6-0,8*), ricordando che la cometa riflette la luce solare.

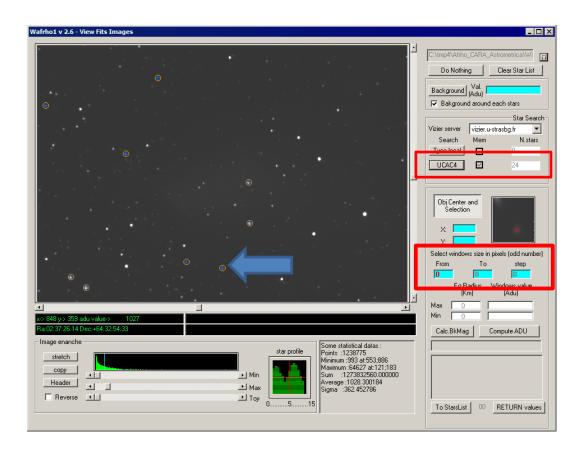
WinAfrho leggerà intorno ad ogni stella trovata il Background, cioè farà fotometria su tutte le stelle di tipo solare trovate nel campo.

NOTA.

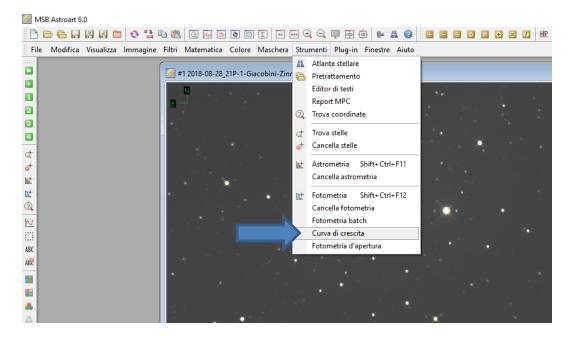
La misura Afrho della cometa è calcolata utilizzando stelle di riferimento. Winafrho ci permette di controllare se nel campo del CCD abbiamo tali stelle prima di iniziare le osservazioni.


La scelta delle stelle di riferimento è MOLTO importante per produrre ottime misure di Afrho. Tali stelle devono soddisfare i seguenti requisiti;

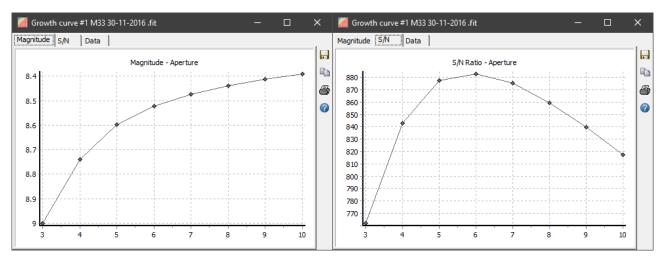
- Stelle con indice di colore (B V) compreso fra 0.5 e 0.7 (o 0.4 e 0.8 se nessuna stella è disponibile in tale intervallo).
- La magnitudine della stella di riferimento dovrebbe essere compresa fra la **9** e la **10-15mg** circa, tale da tenere l'errore il più basso possibile.
- L'errore di magnitudine della stella di riferimento deve essere minore di **<0,05** se nessuna stella ha un tale errore allora possiamo usare stelle con errori anche di **0,1**mg.

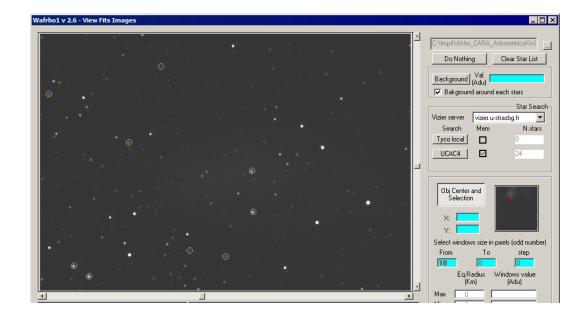

Per determinare le stelle solari utilizziamo un database stellare in questo caso [UCAC4] e clicchiamo sul apposito pulsante.

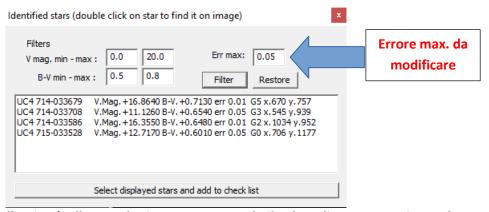
NOTA:


Può succedere che nel nostro campo, grande o piccolo che sia Winafrho non trovi nessuna stella di tipo solare, in questo caso possiamo utilizzare una versione del catalogo Tyco che fa parte dell'istallazione di Winafrho. Una volta scaricato e copiato nella cartella di istallazione di Winafrho dobbiamo andare nella finestra di [Set Default] e alla voce [Local and net resources] troviamo la voce [Tyco 2 catalog path] e iseriamo il percorso come <u>esempio</u> sotto. A questo punto possiamo solo sperare che nel campo ci siano stelle Tyco. In caso contario la misura non è possibile a meno di non utilizzare un campo adiacente.

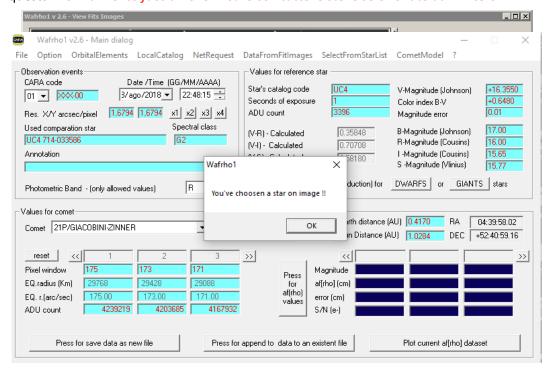
Usando UCAC4 abbiamo trovato nel nostro esempio 20 stelle. Quelle selezionate dal quadratino di colore arancio sono le stelle di tipo solare.

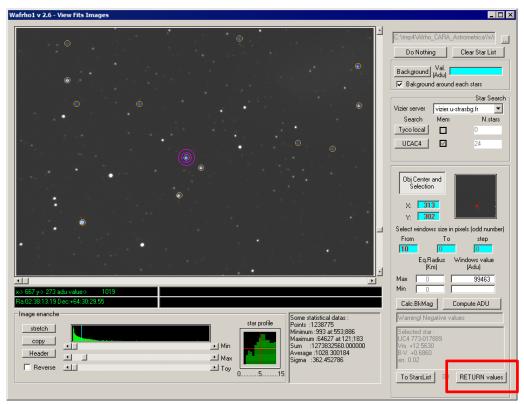

Ora va definito in [Select windows size in pixel (odd number)] quale finestra di misura sulla stella utilizzare per la fotometria, per avere un'idea strumentale posso utilizzare (se lo avete) Astroart, vado con il mouse su una stella non satura e seleziono la stella con un clik, poi vado in [Strumenti] – [Curva di crescita].


Inseriamo il Raggio massimo di calcolo, è un valore indicativo e diamo ok.


Il risultato della curva ci dice che possiamo tranquillamente usare una apertura (diametro) di 7 o 8 in pixel per avere il massimo segnale, oltre il guadagno diminuisce.

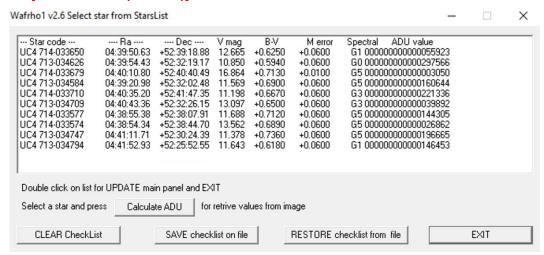
Ritorniamo su WinAfrho e alla voce [Select windows size in pixel (odd number)] - [From], immettiamo l'apertura fotometrica che dovrà quindi essere 4-5 volte la FWHM media delle stelle presenti nel campo in modo da misurare praticamente tutto il flusso della stella. Nel nostro esempio diamo il valore 10.

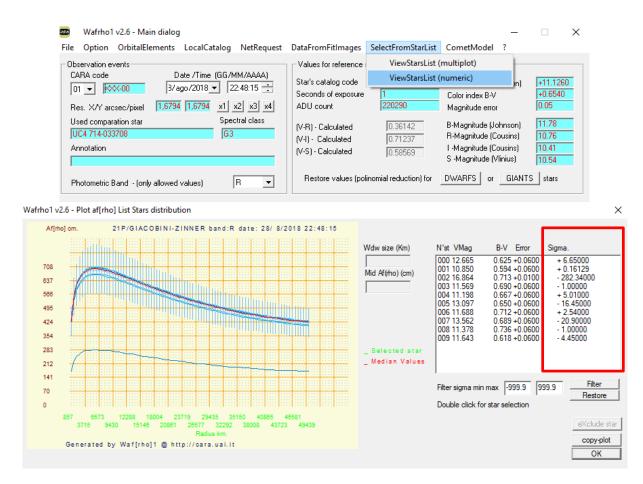

Ora clicchiamo col pulsante destro del mouse sull'immagine, apparirà una finestra dove ci viene indicato quali stelle utilizzare per la misurazione. Se clicco su [Select displayed stars...] vado a fare la misura in sequenza per tutte le stelle, altrimenti vado col mouse su una o più stelle e con il pulsante sinistro le seleziono una alla volta.


(Se compaiono poche stelle, si può allargare la ricerca aumentando il valore di errore massimo nel nostro esempio da 0.05 a 0.06, oppure direttamente a 0.1 o 0.99, poi cliccare su Filter)

Può essere utile in certi casi fissare i limiti minimo e massimo per le stelle di confronto. Il minimo permette di escludere stelle luminose che facilmente possono essere saturate, il massimo escludere stelle con S/N basso e che quindi forniscono misure poco accurate o irrealistiche se la stella è a livello di fondo cielo. I limiti vanno fissati in base alle prestazioni del proprio strumento (magnitudine limite, intervallo di linearità del CCD), stimabili facilmente misurando a campione gli ADU di alcune stelle.

Se si fa doppio click su una stella della lista mi fa vedere dov'è la stella sull'immagine e posso fare la misura solo con questa. *Normalmente facciamo le misure con tutte le stelle selezionate da - Filters.*


A questo punto clicchiamo su [Select displayed stars and add to check list] e verranno utilizzate le stelle per fare il calcolo.

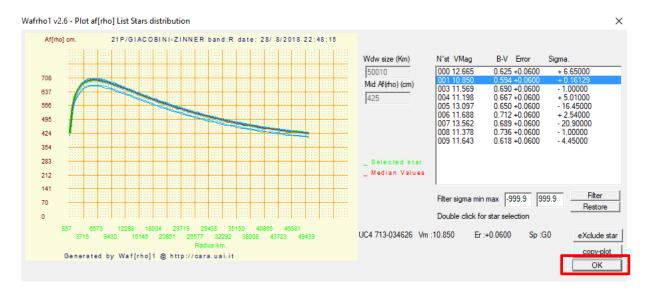

Una volta che le stelle sono state calcolate tutte posso cliccare su [RETURN values]. E alla finestra con messaggio che compare Clicco su OK.

Arrivati a questo punto abbiamo inserito tutti i dati che servono.

Cliccando su [ViewStartsList (numeric)] ho i valori numerici delle nostre stelle.

Cliccando su [ViewStartsList (multiplot)] ho i valori e ottengo il grafico con tutte le stelle.

In questo caso vediamo che una curva ha dei valori completamente diversi rispetto alle altre, questo indica che la misura della stella è errata; può dipendere ad esempio dal fatto che la stella è troppo vicina ad


un'altra, che la stella è variabile o che i dati di catalogo sono errati. Non facciamo altro che eliminarla andando a selezionarla. Per individuare la curva che mi interessa vado a vedere il sigma che non è altro che lo scostamento dal valore centrale della misura. *In questo caso era un palese (-282,34)*.

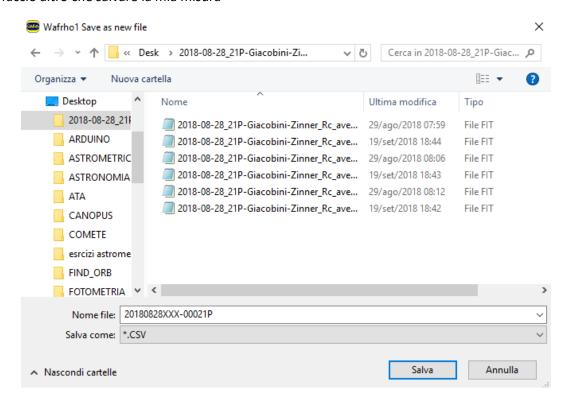
Seleziono il sigma più alto che viene visualizzato in verde, clicco su [eXclude star], il programma ricalcolerà una nuova curva.

Questo è il nostro risultato che esprime la misura del valore Af[rho] in funziona della distanza dal nucleo.

A questo punto scelgo la stella che ha il sigma più basso facendo doppio click su di essa e poi su OK.

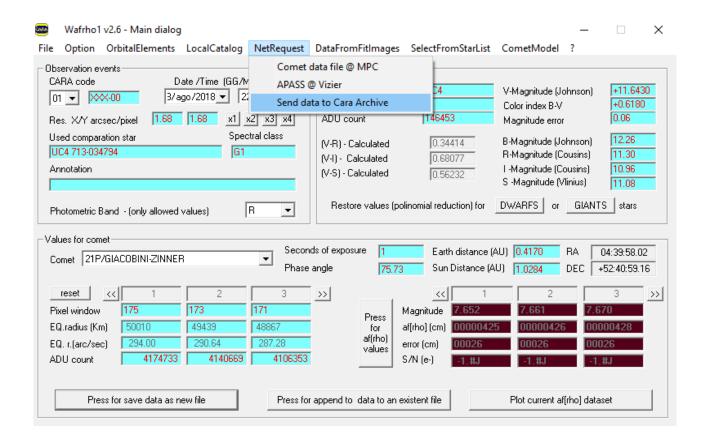
Facciamo il ricalcolo cliccando sul pulsante [Press for af(rho) values] e poi sul pulsante [Plot current af(rho) dataset].

Plottiamo la nostra misura Afrho per quella stella.

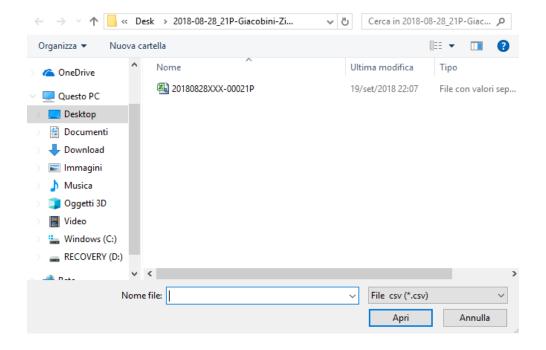


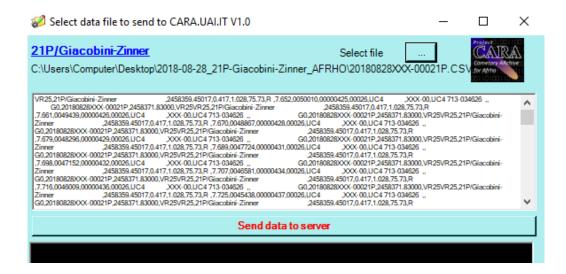
In questo caso vediamo l'andamento lineare della stella. Possiamo copiare la nostra plottata e copiarla su qualsiasi altro programma col pulsante [copy-plot]. Una volta finito il tutto click sul pulsante [exit].

Ora dobbiamo creare il file contenente la misura numerica cliccando sul pulsante [Press for save data as new file].



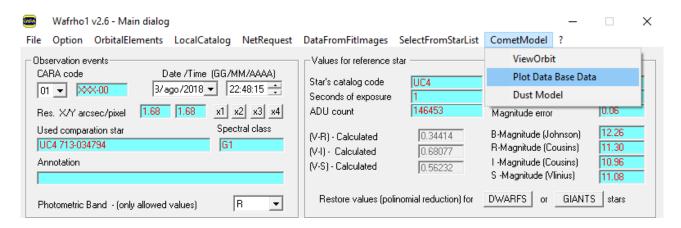
E non faccio altro che salvare la mia misura

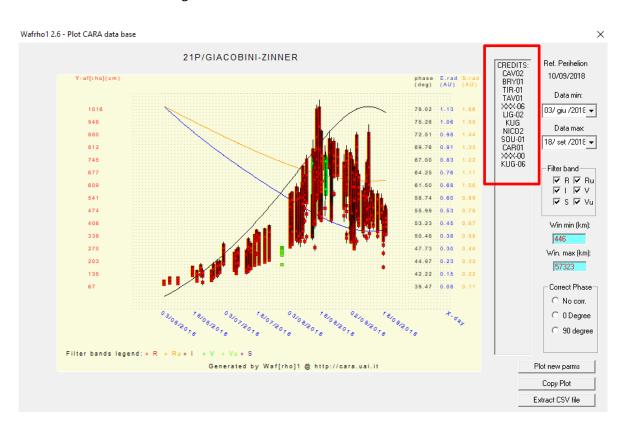



Ora siamo pronti per inviare al DataBase del **CARA** la nostra misura cliccando su [NetRequest] – [Send data to Cara Archive].

Se si vogliono rimandare i dati (magari ricalcolati più accuratamente, oppure se ci si era accorti di un errore) della stessa cometa alla stessa data e con lo stesso codice osservatore il programma cancella automaticamente sul server i dati vecchi e carica quelli nuovi.

Seleziono il file in [Select file].



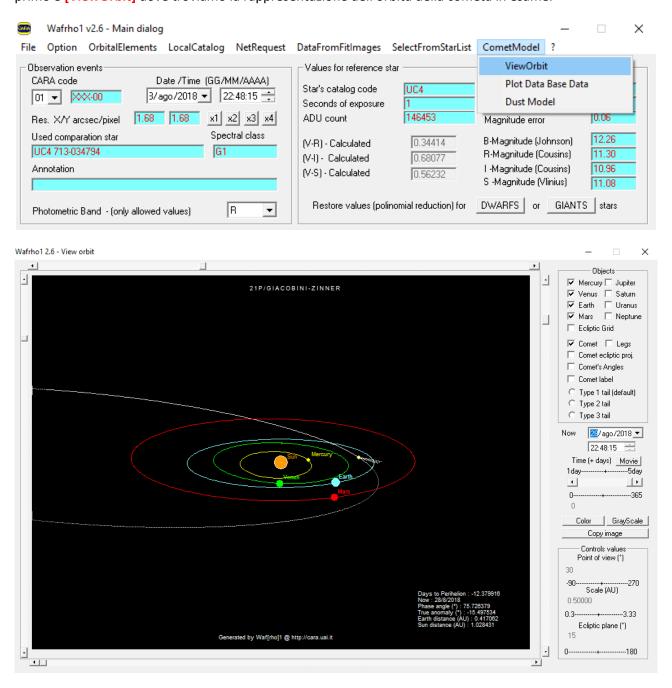

Se <u>nella stessa sera</u> facciamo riprese sulla stessa cometa con <u>filtri diversi</u>, sarà necessario salvare i dati delle diverse sessioni nello <u>stesso file</u> con la funzione [Press to append data to an esistent file] e poi inviarlo al Data Base.

Possiamo verificare se i nostri dati sono stati inviati cliccando su [CometModel] - [PlotData Base Data].

Verifichiamo se la nostra misura è stata inserita correttamente, la sigla che usiamo compare come ultima voce che si trova alla destra del grafico.

APPENDICI

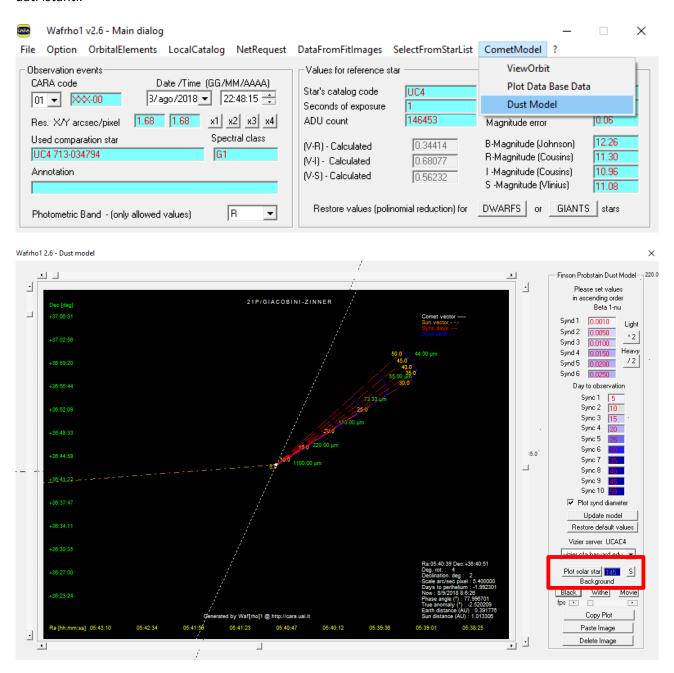
Le appendici a questo manuale sono attinenti sia all'uso del software Winafrho che non. Si è cercato di riunire l'esperienza maturata in questi anni dalle risposte a quesiti che man mano venivano dati in lista comete riguardanti l'uso del software.


Ho cercato di riunire e dettagliare quanto più possibile casistiche di misurazione capitate al gruppo comete. Purtroppo in letteratura non troviamo niente di scritto a cui poter attingere, la fotometria Afrho è giovane e l'esperienza è un fai da te.

Come detto le appendici troviamo anche il come si fa per pretrattare, acquisire un buon flat ecc...,

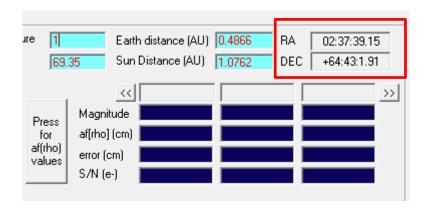
ViewOrbit

All'interno di WinAfrho disponiamo di due interessanti applicativi, li possiamo trovare in [CometModel], il primo è [ViewOrbit] dove troviamo la rappresentazione dell'orbita della cometa in esame.

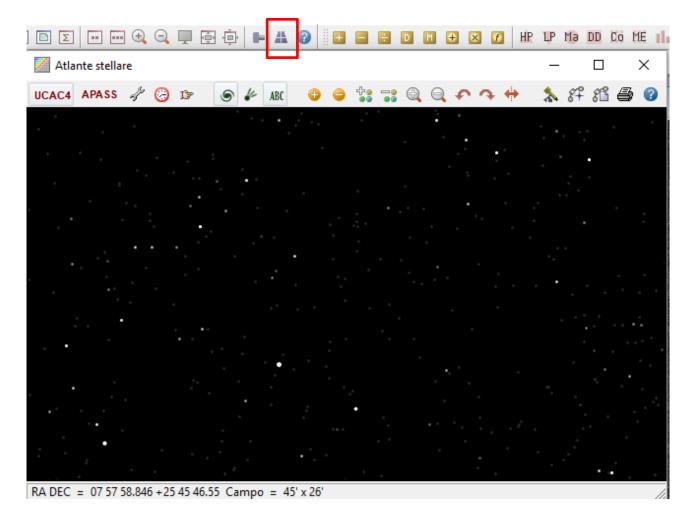

Dust Model

Ci permette di verificare se in un dato giorno posso trovare nel campo del mio CCD stelle di tipo solare cliccando in [CometModel] – [Dust Model] e in [Plot solar star].

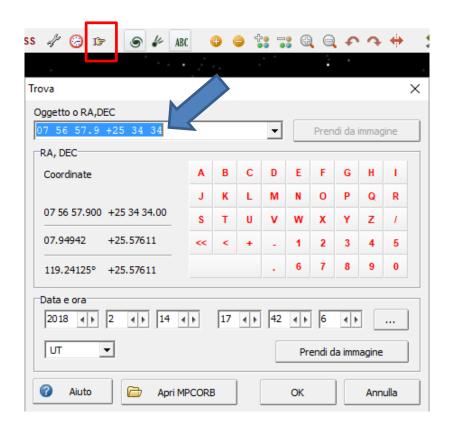
Inoltre è possibile visualizzare l'aspetto teorico della coda di polveri mediante l'andamento delle linee curve delle "syndyne" e delle "synchrone", che descrivono la disposizione dei grani di polvere in base alla loro dimensione e istante di emissione.


(modello di Finson e Probstein http://adsabs.harvard.edu/full/1968ApJ...154..327F).

Le syndyne si riferiscono ai grani che subiscono la stessa accelerazione da parte della pressione di radiazione solare (quindi di uguale dimensione e massa), le synchrone ai grani di varia dimensione emessi in dati istanti.

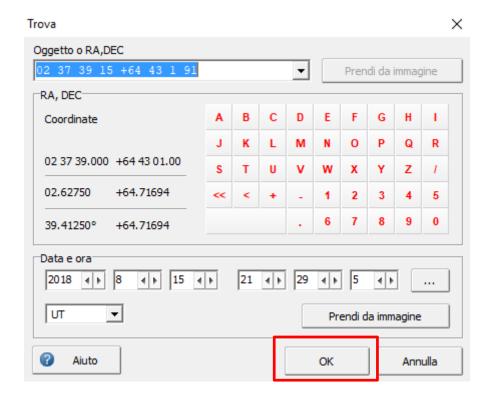

Calibrare le immagini con Astroart

Se l'immagine delle stelle non è stata calibrata astrometricamente possiamo usare i dati della posizione della cometa ricavati da Winafrho inserendoli in Astroart per ottenere la calibrazione. La calibrazione inserirà nel file FITS le coordinate WCS (World Coordinate System). In pratica muovendo il cursore sull'immagine vedremo in Astroart e WinAfrho le coordinate di AR e DEC.

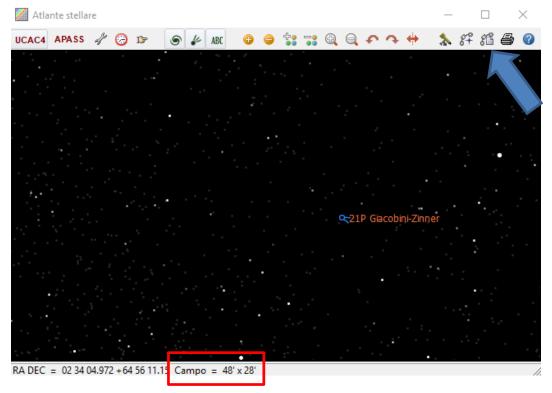


Questi dati vanno copiati e riportati su Astroart come da indicazioni seguenti.

Vado a calibrare la mia immagine su Astroart. Per prima cosa apro l'atlante stellare di Astroart



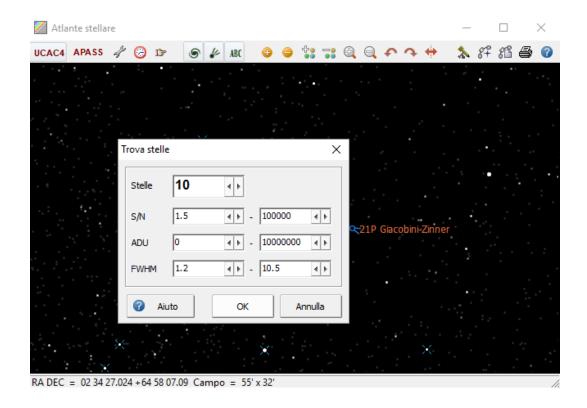
Poi clicco sul pulsante trova e riporto declinazione e ascensione retta copiati da WinAfrho nella casella indicata



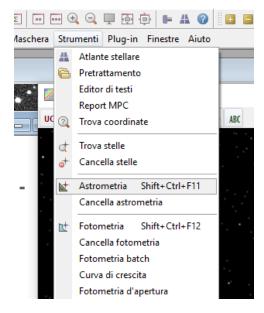
ATTENZIONE a non lasciare doppi punti (:) se fate un copia incolla.

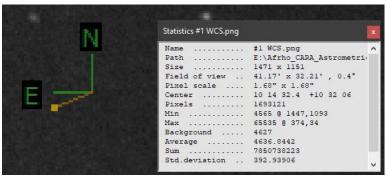
Infine cliccate su ok (vedi immagine sotto).

L'atlante stellare di Astroart vi porterà nel campo della cometa (dalla versione 6 in avanti vi segnerà anche il punto dove si trova la cometa). Per facilitare la ricerca dobbiamo impostare un campo che sia circa uguale a quello del nostro CCD. Le misure sono in fondo alla schermata.


Facciamo una ricerca delle stelle di riferimento automatico cliccando sull'apposita icona indicata dalla freccia e poi diamo OK. Astroart propone un minimo di 10 stelle. A volte non trova le 10 stelle per cui bisogna ridurre il numero di ricerca, altre volte possiamo tranquillamente cercarne anche 100.

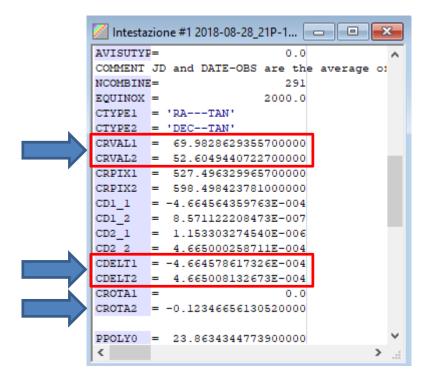
Fino alla versione 6 le icone per la selezione della ricerca manuale e automatica delle stelle è questa sotto:


Dalla versione 7 le icone sono queste sotto:



Per l'uso che ne facciamo non è necessaria una precisione astrometrica elevata, Winafrho deve sapere più o meno dove siamo per identificare le stelle di tipo solare.

Dopo aver trovato la relazione delle stelle su Astroart clicco sul pulsante Astrometria [Strumeti] - [Astrometria].

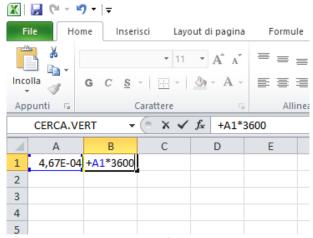


Vedremo comparire nel lato superiore destro dell'immagine il simbolo dell'allineamento dell'immagine e dalla versione 7 di Astroart anche la direzione del Sole. Richiamando la finestra di **statistica** verranno visualizzati altri dati che ci potrebbero fare comodo, come ad esempio il campo inquadrato, la rotazione della nostra immagine, gli arcosecondi e AR e DEC del centro

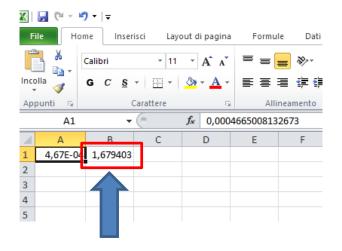
immagine

Il programma a questo punto calcola il campo del cielo in cui sono e lo memorizza nell'intestazione del file FITS. Ora non rimane che salvare l'immagine, altrimenti perdiamo l'astrometria appena fatta.

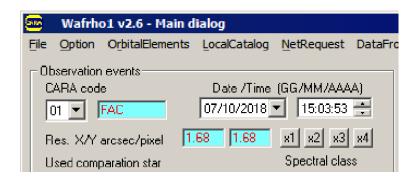
Se non si conoscono alcuni dati della nostra configurazione possiamo ricavarli dai valori salvati all'interno del file FITS memorizzato. Le voci interessate sono:

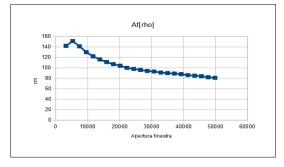

CRVAL1 e CRVAL2 indicano il centro lastra

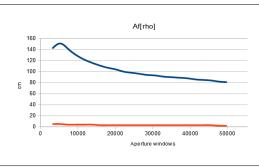
CDELT1 e CDELT2 indicano la risoluzione (cioè il campo del mio CCD)


CROTA1 e CROTA2 indicano la rotazione del campo del CCD

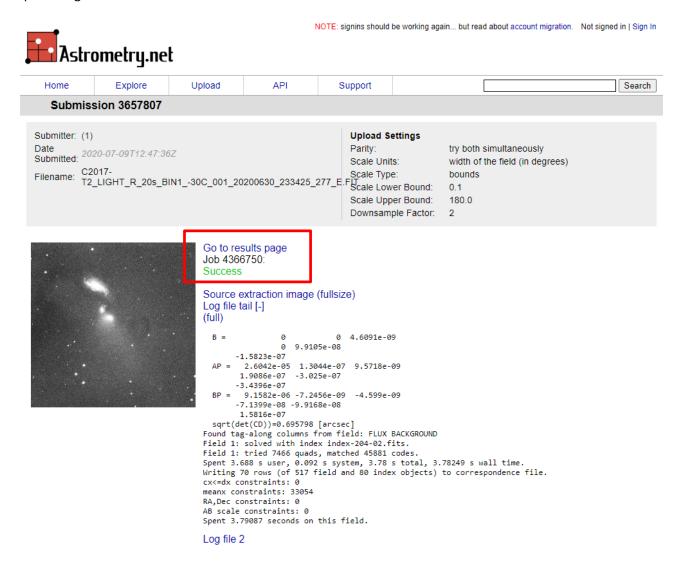
Se non si conoscono gli arco secondi per pixel possiamo calcolarli nel seguente modo: Copio la stringa CDELT2

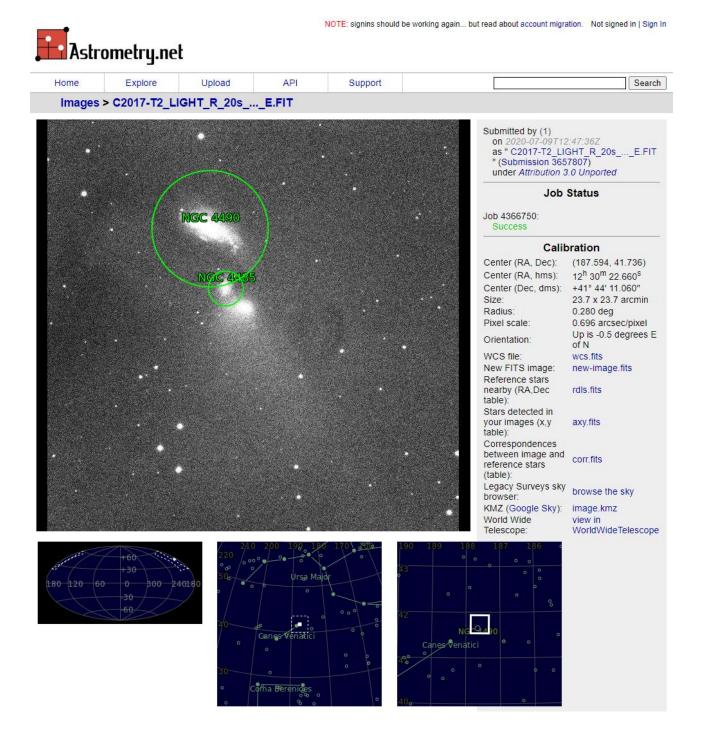

Aprire Excel e incollare i dati nella prima cella, nella cella a fianco scrivo + A1 per 3600 (perché il valore è espresso in gradi).


Poi clicco sulla cella A1 e nella casella B1 il valore si trasforma in arco secondi pixel, che è il valore che vado a copiare in WinAfrho.



Questi sono i valori in arc-sec/pixel da inserire nelle 2 celle [Res. X/Y arc-osec/pixel] in WinAfrho.

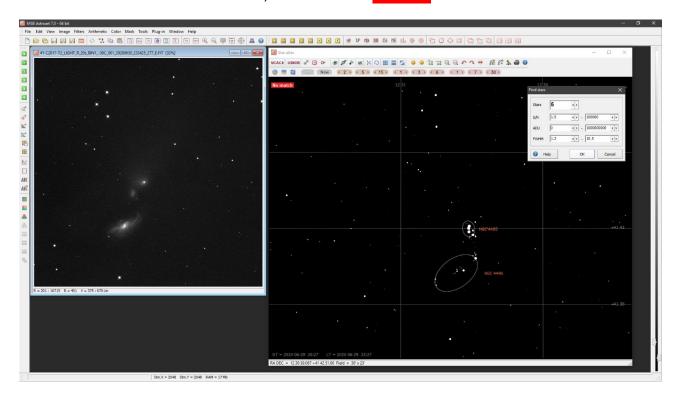



Il file che viene salvato (CSV, Excel) e inviato al DataBase del CARA ha questo formato. Le colonne che generano il plot sono quelle in giallo.

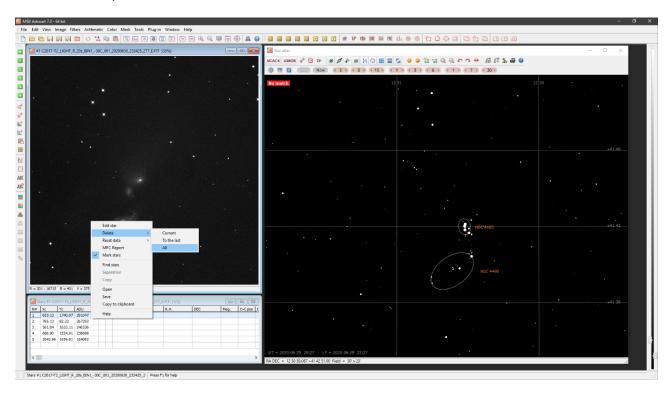
Ci sono casi, in particolare quando si usano i filtri, che Astroart fallisce il riconoscimento del pattern stellare. Ad esempio usando il filtro a (647nm) o come recentemente il filtro (r SLOAN), a volte anche con (Rc) ove il numero di stelle è inferiore a quelle dell'atlante. Ci sono un paio di possibilità, o usare un servizio online come – astrometry.net – che al link: http://nova.astrometry.net/upload ti permette di caricare una tua immagine (FITS, JPG, GIF e PNG) e dopo qualche passaggio ritorna una videata con l'avvenuto successo per quanto riguarda il riconoscimento e la relativa astrometria. Vedi schermata sotto.

Nel caso di riconoscimento affermativo come nel caso sopra clicchiamo su [Go to result page] e verremo indirizzati ad un'altra schermata con il risultato dell'operazione.

A volte la ridotta dimensione del campo o la scarsità di stelle porta anche questo servizio a fallire il riconoscimento. Qui non è possibile "forzare" un tipo di riconoscimento manuale come illustrerò con Astroart.

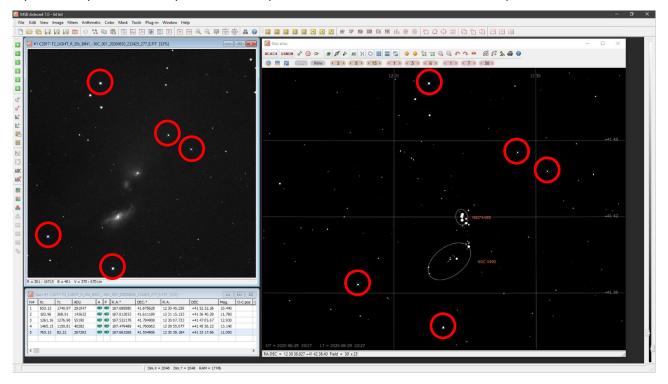


Fra le varie cose vediamo la posizione in cielo della nostra immagine a tre livelli di zoom, inoltre in alto sono riportati vari dati fra cui il campo, la risoluzione e l'angolo di rotazione della nostra ripresa.

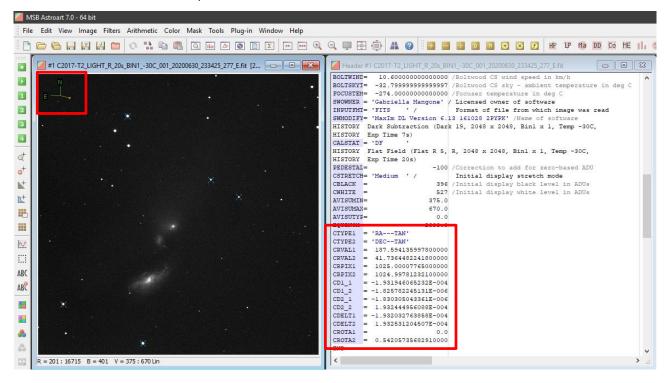

Diversi link accedono allo scaricare file contenenti varie informazioni, il link che interessa noi è quello relativo allo scaricare l'immagine calibrata (new-image.fits).

NOTA: il vizio di leggere le immagini e di visualizzarle utilizzando librerie grafiche porta a visualizzarle con un orientamento differente da quella che abbiamo mandato. Normalmente è un ribaltamento verticale.

L'alternativa è manualizzare in Astroart il riconoscimento stellare. L'esempio viene da recenti immagini della cometa C/2017 T2 PanSTARRS fatte all'osservatorio di AGEROLA con filtro Rc. Caricata l'immagine in AA e aperto l'atlante abbiamo cliccato sul riconoscimento e nonostante abbia scelto poche stelle il riconoscimento non è andato a buon fine, visualizzando un No match.



A questo punto forziamo manualmente il riconoscimento richiamando il menu [View] – [Star] o la relativa icona che compare nella barra in alto. Quando richiamato se abbiamo già tentato un riconoscimento automatico compariranno delle stelle che andranno eliminate con il tasto destro del mouse.

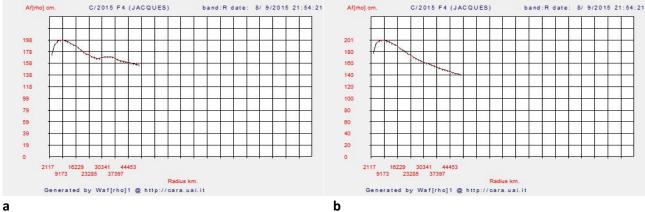


Fatto ciò selezioniamo l'immagine e con il mouse una stella e clicchiamo, a questo punto nella finestra stella vedremo comparire i dati della stella selezionata. La selezioniamo nella finestra stelle e vedremo comparire un crocicchio sulla stella che ce la indica. Ora andiamo sull'atlante e selezioniamo la stessa stella, vedremo comparire nella finestra stelle i dati di AR e DEC.

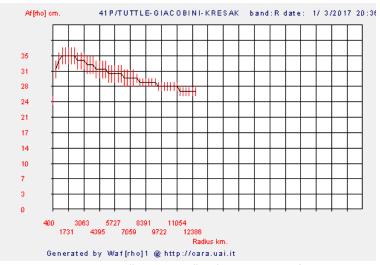
Ripetiamo il procedimento per almeno 5 o più stelle nello stesso modo come esempio sotto.

Andiamo o in [Tools] e selezioniamo [Astrometry] oppure la scorciatoia [Shift+Ctrl+F11], vedremo comparire un menù riepilogativo delle scelte e delle stelle che verranno usate come riferimento e l'inequivocabile simbolino dell'orientamento e della posizione del Sole, segno che nell'intestazione del file sono comparsi i valori delle WCS. Ora non resta che salvare l'immagine. Quando salvata possiamo vedere che nell'intestazione sono comparse delle voci nuove.

Tecniche di misurazione


Fare fotometria Afrho non è una cosa semplice. Se si hanno immagini con un buon rapporto segnale rumore, che spesso equivale ad avere immagini contenenti comete luminose, il risultato sarà indubbiamente buono. Se invece abbiamo immagini con segnale debole, comete piccole, comete con una chioma più estesa del nostro frame e con l'impossibilitò di leggere il background o sovrapposte a stelle di campo allora avremo un problema. Qui riportiamo alcuni casi che spero possano servire da campione.

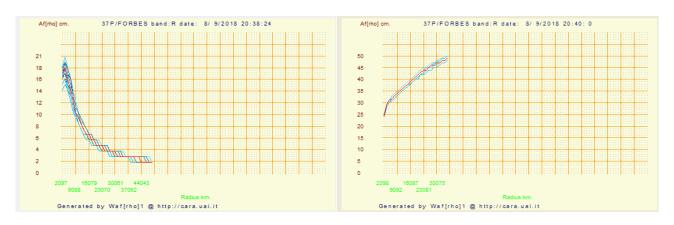
Una buona curva Afrho è una curva che sale (principalmente dovuta alla mancanza di risoluzione dovuta principalmente al seeing ma anche ad eventuali problemi nell'ottica o nella messa a fuoco) e poi si dispone in orizzontale con una pendenza come in figura.


Originariamente la misura veniva fatta prendendo come riferimento solo una stella di tipo solare. Se l'immagine era stata fatta da due osservatori nelle stesse condizioni, poteva succedere che non si scegliesse la stessa stella e ciò portare a risultati differenti. Stabilire quale misura era coerente risultava complicato. Con la nuova versione di Winafrho il problema è stato ridotto utilizzando tutte le stelle di tipo solare e utilizzando il valore mediano. Probabilmente il valore di Afrho più vicino al vero.

Primo caso (C/2015 F4 - Jaques).

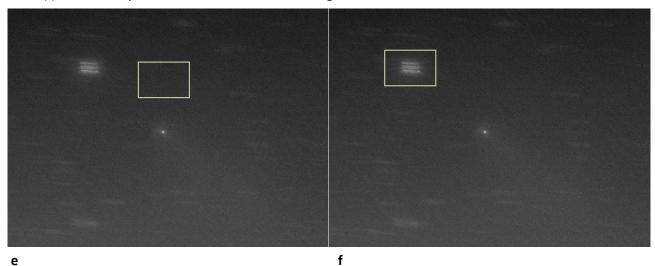
I due grafici mostrano la curva ottenuta dall'immagine con stelle e cometa (a) e sull'immagine di sigma (b). Come possiamo notare ad un certo punto le due curve divergono. In questo caso la misura migliore è quella fatta sull'immagine di sigma.

Secondo caso (41P - Tuttle-Giacobini-Kresak).

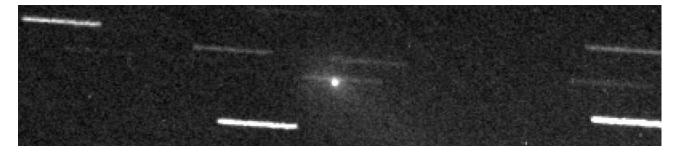

In questo grafico notiamo come la curva sia "scalettata", ciò e dovuto al fatto che la cometa in questione era molto vicina alla Terra e il programma ha usato finestre molto grandi per la misura.

Quindi è necessario, per rimanere sotto al limite delle 100 finestre (usate in questo caso) massime previste dal programma mettere uno step più grande degli abituali 2 pixel.

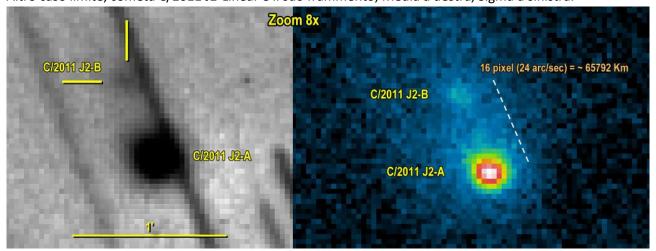
(Il programma propone la dimensione per una finestra di 50.000 km circa a scendere). Se i valori di afrho poi sono piuttosto bassi come in questo caso e i valori sono interi, abbiamo per diverse finestre lo stesso valore e quindi uno scalino apprezzabile quando il valore cambia di una unità (le scale X e Y sono proporzionate allo spazio disponibile).


Il programma quando fa il plot non fa un'interpolazione ma unisce i punti.

Terzo caso (37P - Forbes).



c d


Questo è un caso emblematico di come la scelta del background possa portare alla generazione di misure Afrho e dei relativi grafici completamente differenti (*discorso approfondito in una appendice*). Il grafico (c) è stato ottenuto prendendo il valore di background come normalmente si fa, in una zona vuota (e). Il grafico (d) è invece stato ottenuto prendendo il valore di fondo cielo più il contributo del valore di una stella (f). E' un esempio limite di scelta corretta e, sbagliata f.

Effettivamente la misura di questa cometa sarebbe stata complicata se non avessimo usato la sigma, nell'immagine sotto è ben visibile la sovrapposizione della cometa con una stella. Volendo utilizzare la media avremmo dovuto sospendere le riprese in concomitanza della sovrapposizione in modo tale da lasciare un buco.

Altro caso limite, cometa C/2011 J2-Linear e il suo frammento, Media a destra, Sigma a sinistra.

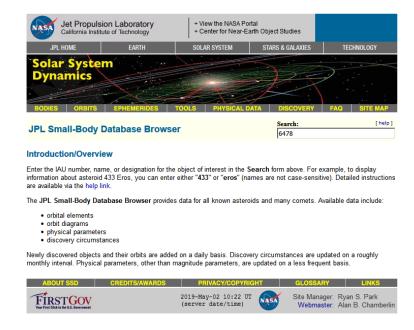
Misurare un asteroide e/o una nuova cometa.

WinAfrho è predisposto per l'inserimento di elementi orbitali di oggetti non presenti nel file comete che normalmente usa e cioè - Soft00Cmt.txt -, scaricabile da:

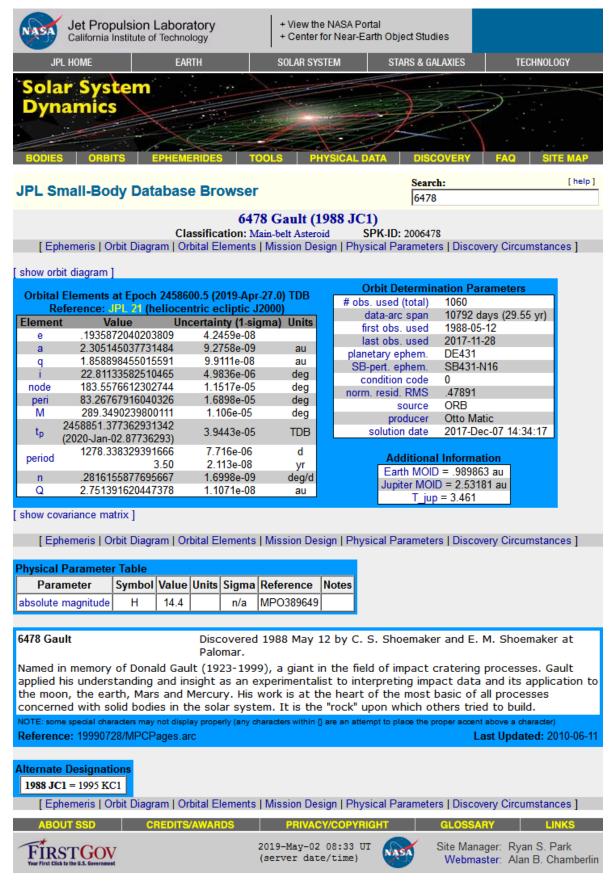
http://cfa-www.harvard.edu/iau/Ephemerides/Comets/Soft00Cmt.txt

E'evidente che si tratta del file che contiene solo elementi di comete.

Recentemente l'asteroide 6478 Gault ha iniziato una attività prettamente cometaria, cioè sono comparse delle code dovute a emissione di polvere. Si è reso necessario trovare un metodo per poter inserire i suddetti elementi.


In Soft00Cmt.txt gli elementi sono disposti secondo un ordine ben preciso, la stinga è:

A6478	2020 01 2.377	0 01 2.377					20180814	14.4	0.15	A6478	Gault
(1)	(2)	(3)	(4)	(6)	(7)	(8)	(9)	(10)	(11)		
(1)	· il nome asteroid	e deve ess	ere precedu	ıto dalla	lettera A	-					
(2) - tp -	· data del perieli	o (Date of	perihelion	ι)		- da Gu	ide o JPL				
(3) - q -	· distanza dal per	ielio (Per	ihelion dis	tance)		- da Gu	ide o JPL				
(4) - e -	eccentricità (Ec	centricity)			- da Gu	ide o JPL				
(5) - peri -	argomento del pe	rielio (Ar	gument of p	erihelion	1)	- da Gu	ide o JPL				
(6) - node -	· longitudine nodo	ascendent	e (Long. as	cending n	iode)	- da Gu	ide o JPL				
(7) - i -	· inclinazione del	l'orbita (Inclination	of orbit	.)	- da Gu	ide o JPL				
(8)	data ultima osse	rvazione (date last o	bservatio	on)	- da Gu	ide o JPL				
(9) - mag -	- mag - magnitudine assoluta (absolute magnitude)										
(10)	- parametro di pendenza (slope parameter)						ide o JPL				
(11)	· sigla e nome ast		-								


Tutti questi parametri si possono rilevare tramite il software Guide, o in alternativa direttamente dalla pagina del:

https://ssd.jpl.nasa.gov/sbdb.cgi#top

Da li una volta selezionato il nome dell'oggetto si verrà rimandati ad una pagina che contiene i parametri del nostro oggetto.

e reindirizzati ad un'altra pagina che contiene le informazioni cercate.

A questo punto ci sono due possibilità, o si edita il file – Soft00Cmt.txt – e si aggiungono i nuovi parametri in fondo al file o si duplica il file, lo si ripulisce dei valori delle comete e si aggiungono i nuovi dati.

Attenzione: se scarichiamo da WinAfrho un nuovo file di comete esso potrebbe sovrascrivere il file con le aggiunte che abbiamo fatto.

Attenzione: se inseriamo un asteroide il suo numero va preceduto dalla lettera **A**, esempio, 6478 (Gault) va scritto come A6478, altrimenti non verrà inserito nel database del CARA.

A questo punto ci troveremo due file con lo stesso nome, basta rinominare quello che non si usa e viceversa.

Il file dell'asteroide conterrà solo una stringa.

UNA NUOVA COMETA

Recentemente è arrivata una nuova cometa, per trovare gli elementi orbitali ci possiamo appoggiare al servizio online che l'MPC mette a disposizione. Se dobbiamo aggiornare i nostri planetari e usare WinAfrho il problema invece si pone in tutta la sua gravità. L'MPC tuttora non ha ancora aggiornato il file comete e l'MPCORB.DAT. Questo impedisce ai nostri software di trovare il nuovo oggetto, per esempio impedisce di fare misure Afrho, nel suo menù non troveremo la nuova cometa. Possiamo risolvere il problema inserendo a mano gli elementi che troviamo sul sito del JPL (vedi sopra) ma nella stringa bisogna inserire anche il nome che gli è stato dato dall'MPC che troviamo alla pagina -

https://minorplanetcenter.net//mpec/RecentMPECs.html -.

Trovata la circolare:

MPEC 2019-R113 (2019 September 13)

COMET C/2019 Q4 (Borisov)

la apriamo e copieremo la sigla data dall'MPC. Sotto la MPEC relativa e la relativa stringa selezionata.

```
M.P.E.C. 2019-R113

Issued 2019 September 13, 15:00 UT

The Minor Planet Electronic Circulars contain information on unusual minor planets and routine data on comets. They are published on behalf of Division F of the International Astronomical Union by the Minor Planet Center, Smithsonian Astrophysical Observatory, Cambridge, MA 02138, U.S.A.

Prepared using the Tamkin Foundation Computer Network

MPC@CFA.HARVARD.EDU

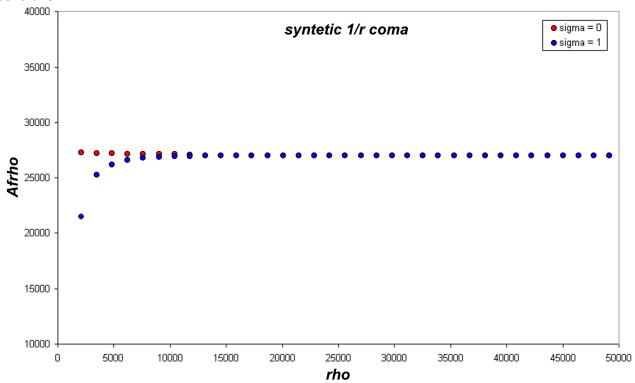
URL https://www.minorplanetcenter.net/ ISSN 1523-6714

COMET C/2019 Q4 (Borisov)

Observations:

CK19Q040 @C2019 09 10.50637 08 48 08.23 +30 23 44.9

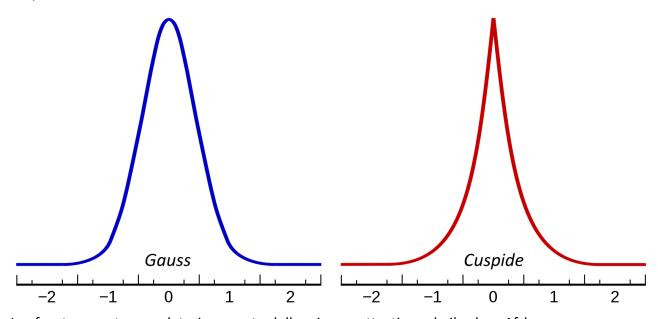
17.9 RVER113675
```


I campi della stringa che servono a Winafrho sono riportati sotto. Il campo *selezionato sopra* va inserito rispettando le posizioni che in questo caso partono dalla posizione 5.

Fatto ciò WinAfrho troverà l'oggetto e noi potremo fare le misure, inoltre si eviterà di generare un errore che impedisce di creare e salvare il file *.CSV da inviare al database.

La curva ideale, anche questione di seeing.

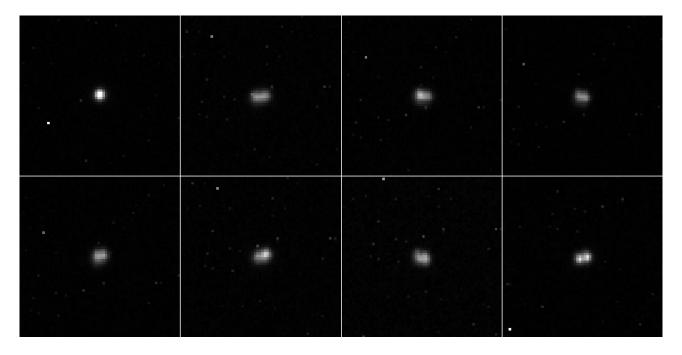
La misura Afrho è influenzata oltre che dalla risoluzione dei nostri strumenti anche dal seeing. A questo punto la domanda lecita è; quale dovrebbe essere in teoria la curva ideale?. Per una chioma teorica con andamento 1/r Afrho deve essere costante a tutte le aperture di misura, punti - rossi. I punti - blu - mostrano quello che accade introducendo una lieve sfocatura che simula l'effetto del seeing. Nelle finestre di misura più piccole il seeing altera la misurazione in modo sensibile.



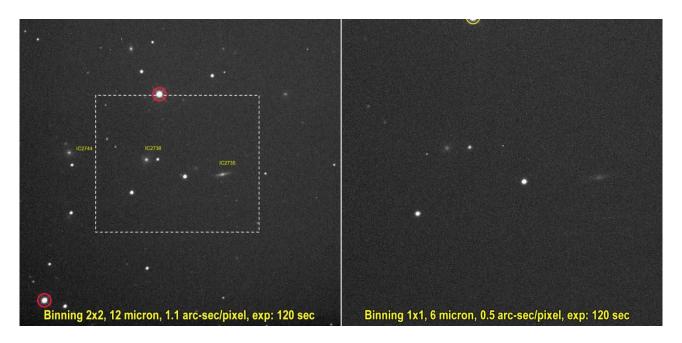
In realtà sommando tutte le incertezze delle nostre riprese e aggiungendo le inevitabili differenze e le variabilità tra le chiome cometarie, la curva osservata si discosta spesso parecchio da quella ideale. Di variabilità delle misure basta osservare le curve contenute in questo manuale.

Due chiacchiere sul seeing bisogna farle, fenomeno a noi astrofili ben presente in ogni sessione osservativa. Vi sono diverse scale per definire il seeing, ma alla fine si tratta di verificare se in quella data sera la turbolenza sia o no accettabile. Mediamente il seeing si attesta fra 1 nei posti migliori a circa 2/3 arcosecondi. Questo significa che anche se la risoluzione del nostro telescopio è superiore noi non la potremo utilizzare, non riusciremo a scendere oltre questi valori. Inoltre più l'esposizione è breve è più si è soggetti alla turbolenza, verificabile facilmente con una webcam che riprenda a 25 frame al secondo. Altro fattore importante è l'altezza dell'oggetto sull'orizzonte.

Nella fotometria classica o nella scoperta degli esopianeti lo sfocare leggermente l'immagine fa si che la luce che colpisce TUTTE le stelle in egual misura si "sparpagli" e che gli effetti di scintillazione diminuiscano.

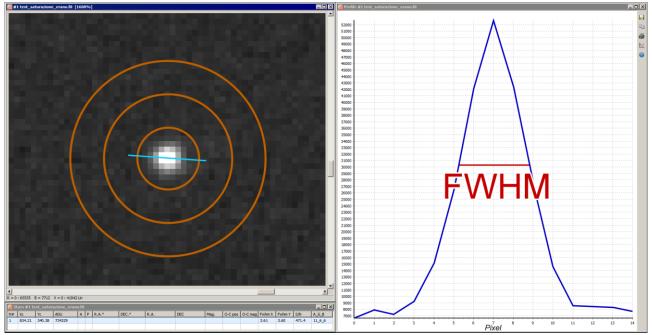

Purtroppo per noi le comete non hanno un profilo di tipo stellare (gaussiana), ma come una cuspide.

La sfocatura porta a un deterioramento della misura sottostimando il valore Afrho.


Per capire quanto la sfocatura da seeing influisca sui risultati possiamo sperimentarlo su immagini già fatte modificando (sfocando e di conseguenza modificando la FWHM) il nucleo della nostra cometa e rieffettuando la misura.

Una idea di come si comporta il seeing l'abbiamo in una immagine (sotto) fatta all'osservatorio di Cavezzo la sera del 16 gennaio 2016 con un campionamento di 1,5 arc-sec/pixel e l'utilizzo di un filtro a 647nm e 10 nm di banda passante. Nonostante il filtro rosso a banda stretta che avrebbe dovuto diminuire la scintillazione (seeing) la sera era particolarmente "turbolenta". Stessa stella in momenti diversi.

A volte (rare a dir la verità) la turbolenza può essere molto buona se non ottima. Si possono usare risoluzioni che normalmente si avrebbero in siti dove sono situati osservatori professionali, come quelli nelle Ande, Canarie o Hawaii.


Immagine realizzata sempre all'oss. di Cavezzo la sera del 9 marzo 2018 con risoluzioni di 1,1 arcsec/pixel e di 0,5 arc-sec/pixel. Caso eccezionale.

Dato un seeing con un certo valore di **FWHM**, le misure saranno attendibili per finestre di misura **2**-**3** volte maggiori.

La FWHM (Full Width at Half Maximum) o Larghezza a metà altezza della gaussiana viene calcolata automaticamente da vari software, il risultato generalmente è espresso in pixel sugli assi X e Y dell'immagine.

Come si misura la FWHM.

A sinistra immagine di una stella e a destra il suo profilo, in rosso la misura della **FWHM** espressa in pixel. Il valore è leggibile nella finestra in basso dell'immagine, dove troviamo che in **X** è: **3,61** pixel e in **Y** il valore è: **3,6** pixel, praticamente una stella perfettamente rotonda. Cosa succede se misuriamo una chioma cometaria con diverse condizioni di seeing ricordando che in una chioma teorica con andamento 1/r Afrho deve risultare costante con diverse aperture di misura?.

Dal grafico sotto vediamo come per una estensione massima di 30000 Km la variazione di seeing in arcosecondi modifichi in maniera significativa l'andamento dei grafici e di conseguenza il valore di Afrho misurato.

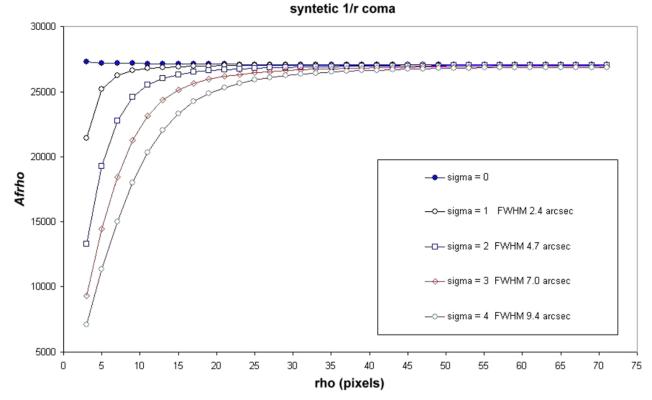
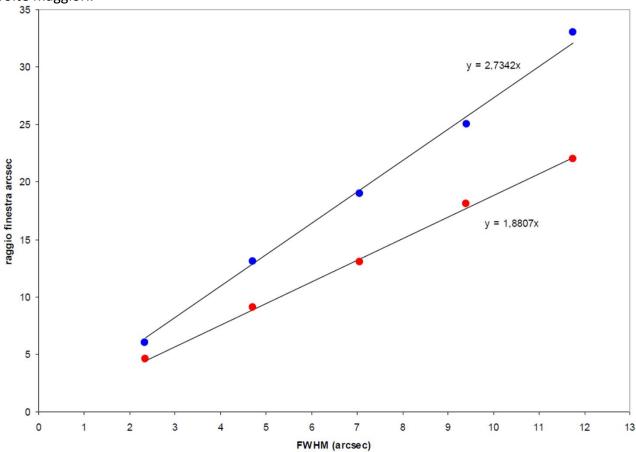
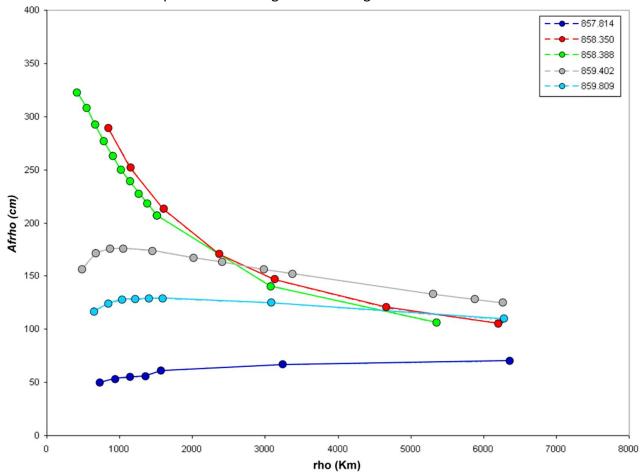




Grafico sotto, variando gli arcosecondi le misure saranno attendibili per finestre di misura 2-3 volte maggiori.

L'analisi del profilo della chioma richiede cautela nelle finestre di misura più piccole dove il seeing altera in modo significativo le informazioni.

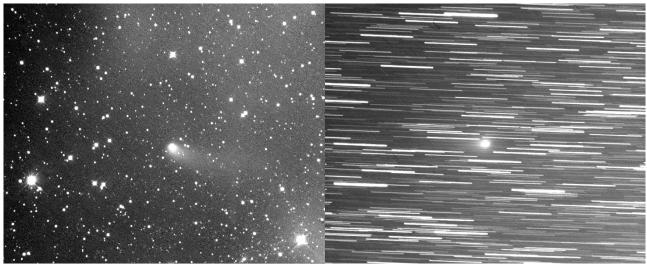
Dal grafico sotto vediamo come per lo stesso oggetto vari misuratori abbiano ottenuto variazioni delle misure dovute alla qualità dell'immagine e al seeing.

Su comete di piccole dimensioni (ci sono alcuni esempi su questo manuale) ad esempio, la 2/I Borisov e recentemente la 29/P (Schwassmann-Wachmann-1), con serate di cattivo seeing il problema non va assolutamente – trascurato.

In questi casi ci viene in aiuto una modalità che tutti i CCD possiedono fin dagli esordi, mi riferisco al cosiddetto Binning. Normalmente si hanno binning del tipo 2x2, 3x3 e 4x4, ve ne sono altri, ma difficilmente se ne fa uso. Il binning non è altro che l'unione di 2, 3 o 4 pixel riuniti in un super-pixel che ha la caratteristica di aumentare la sensibilità sommando gli ADU dei pixel. Per un 2x2 avremo un superpixel di 4 pixel, con 3 avremo un superpixel di 9 e con 4, avremo un superpixel di 16. L'uso del binning nei CCD porta una caratteristica per noi importante, e cioè la diminuzione del rumore totale, dovuto al fatto che il binning è hardware e il segnale aumenta dalla somma del numero dei pixel, ma il rumore solo della radice quadrata dei pixel. Ad esempio se sommo il segnale di 16 pixel il segnale aumenterà di quasi 16 volte, ma il rumore solo di 4 che è la radice quadrata di 16. L'unico inconveniente è il calo della risoluzione in arcosecondi che, come intuibile si dimezza, o altro a seconda del binning utilizzato.

La dipendenza della misura dal background.

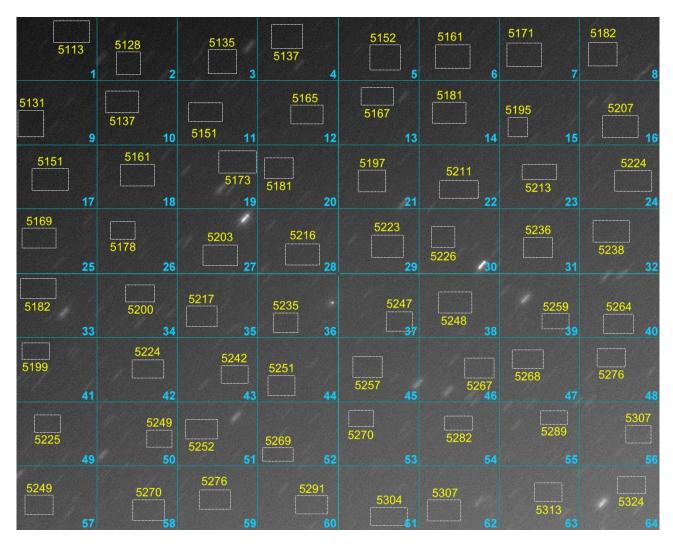
La misura Afrho è fortemente influenzata dalla misura del fondo cielo (background). Le immagini che produciamo inquadrando porzioni di cielo che sono fra le più varie e possono introdurre variazioni di fondo cielo (gradienti). Se il campo è piccolo o si è in siti osservativi di montagna questo fenomeno si riduce fortemente. Se invece siamo sotto cieli inquinati e/o urbani ecco che il fondo cielo diviene predominante.


Ecco due esempi.

123P-West-Hartley 6478-Gault

Un'altra problematica è quella dei campi affollati di stelle (vedi Via Lattea) o disturbati da riflessi provenienti da luci esterne o da stelle luminose in prossimità del nostro oggetto che entrano nel tubo del telescopio.

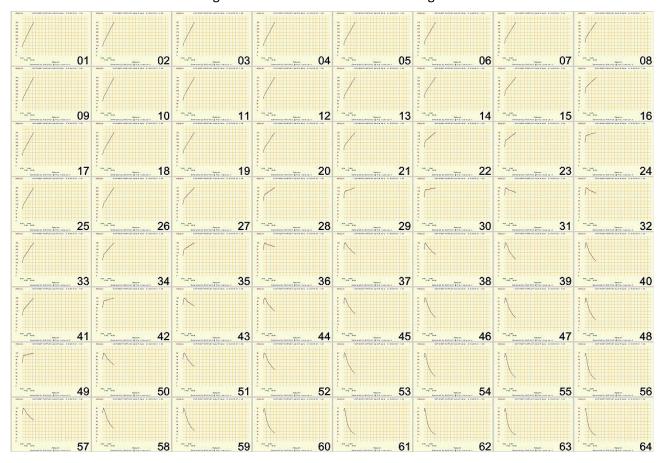
Ecco un altro esempio.


38P-Stephan-Oterma

C/2018 Y1-Iwamoto

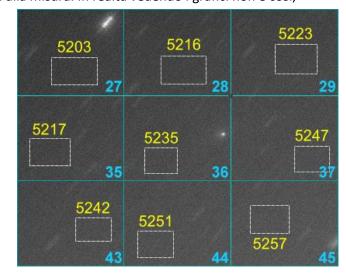
Due esempi esplicativi di gradienti dovuti a riflessi e dall'addensamento stellare provocato in questo caso da una lunga esposizione, stelle molto strisciate e sovrapponibili. L'addensamento stellare dipende anche dal campo e dalla lunghezza dell'esposizione.

Fatte queste premesse entriamo nel vivo: Quanto è dipendente la nostra misura Afrho a seconda della scelta della misura del fondo cielo?. Nell'immagine che segue ho preso una nostra immagine, la ho divisa in una griglia di 8x8 e all'interno di esse ho rilevato il Background, poi con Winafrho ho inserito i miei dati, quelli della cometa in oggetto e la ho misurata cambiando il valore di bg, ottenendo 64 grafici di Afrho.

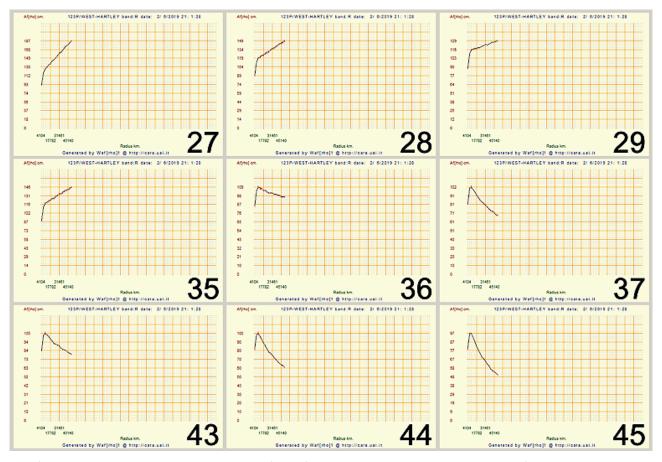

I rettangoli dove si è misurato il background riportato a fianco sono stati scelti cercando di **NON** introdurre stelle.

L'immagine è stata scelta in virtù della disuniformità di fondo cielo. Notiamo come la lettura del bg nell'angolo in alto a sinistra sia di 5113 ADU, mentre la corrispettiva in basso a destra di 5324 ADU, con una differenza di ben 211 ADU.

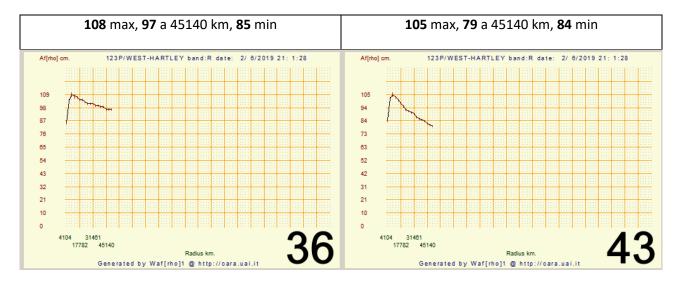
Per un oggetto piccolo come la cometa in oggetto (riquadro 36) sono tanti 211 ADU di differenza, le misure Afrho relative lo mostrato in maniera molto evidente.


Ecco il risultato delle misure con i grafici in funzione della misura del Bg.

E' evidente come i grafici cambino in funzione del bg!. Ora la domanda diviene; quale di queste misure è quella che più si avvicina al vero valore di Af[rho]?. Se facciamo mente locale e ricordiamo il grafico ideale saremo sicuri che tutti i grafici che tendono verso l'alto **NON** sono veritieri, mentre quelli che tendono in basso "tendenzialmente" sono corretti, ma non tutti.


Ragionevole pensare che la misura del bg vada fatta in prossimità della cometa anche se l'esperienza ci dice che non è sempre vero. Ho ristretto l'area a 9 zone in prossimità di essa. Come visibile dall'immagine le aree hanno bg diversi e tutti potenzialmente idonei alla misura. In realtà vedendo i grafici non è così,

passiamo da grafici che vanno verso l'alto ad altri che pendono verso il basso. Da ciò si deduce come la scelta del bg deve divenire oggetto di una accurata scelta.


Già una differenza di soli 10 ADU porta i grafici a cambiare pendenza...

Le aree contraddistinte dai numeri 36 e 43 sembrano essere quelle che ritornano grafici congrui. A dir la

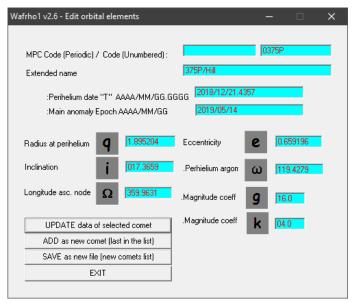
verità anche le misure del riquadro 31 e 32 (vedi l'immagine intera, pagina precedente) non sono male.

Decidere quale usare non è semplice, prendiamo quelle che sembrano le migliori, ossia la 36 e 43 e vediamo i relativi grafici e numeri.

Sono due buone misure, la differenza nei numeri è contenuta e rientra in quel "range" di errore che abbiamo. Solo l'esperienza ci può aiutare a valutare le zone di selezione.

Visivamente e misurando con il cursore il valore di fondo cielo è possibile individuare le zone che si trovano in linea con la cometa e che hanno un fondo cielo simile. Ritagliando un po' l'immagine intorno alla


cometa è anche possibile mappare il fondo cielo e sottrarre il gradiente. In questo caso è però indispensabile essere certi che il nostro flat field sia di eccellente qualità e che il gradiente sia imputabile completamente ad effetti legati a inquinamento luminoso, Luna, crepuscolo... ovvero che non sia legato a variazioni di cielo o a un flat field o pretrattamento mal fatto.


Assolutamente NON applicare mai flat field sintetici o altri processi correttivi che altererebbero irrimediabilmente i valori dell'immagine originale e le informazioni in essa contenute.

Inserire elementi orbitali da winafrho.

Come accennato sopra tramite Winafrho è possibile inserire elementi orbitali di oggetti nuovi o non trovati nei file di configurazione che pubblica l'MPC.

Apriamo Winafrho, selezioniamo una cometa qualsiasi e in [OrbitalElelements] scegliamo la voce [Orbit data editor]

A questo punto si aprirà questo menù:

Compiliamo i campi con il nome del nuovo oggetto e i parametri orbitali essenziali recuperabili come detto in precedenza dal sito del JPL.

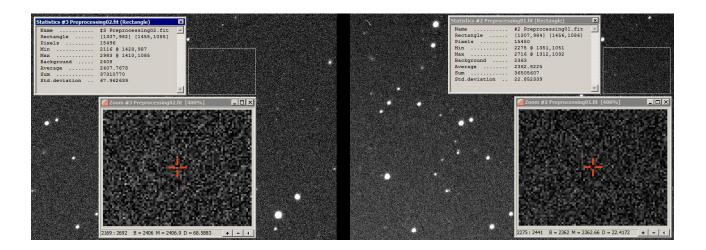
Fatto ciò abbiamo diverse opzioni per salvare il file. Possiamo aggiornare i parametri di una cometa, aggiungere il nostro oggetto al file delle comete oppure salvare con un nuovo nome.

Attenzione: Se aggiorniamo il file comete scaricandone uno nuovo il vecchio verrà sovrascritto e perderemo il nostro oggetto.

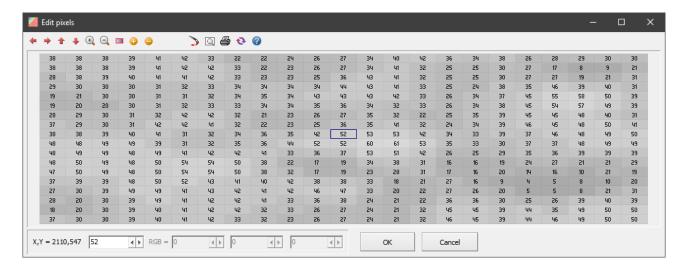
La qualità delle immagini (posterizzazione).

La qualità delle immagini che si acquisiscono sono determinanti per ottenere una buona misura Afrho. Lo sono anche per l'utilizzo con i filtri cometari **RW**, **MCM** e i gradienti radiali/rotazionali (**Larson-Sekanina**).

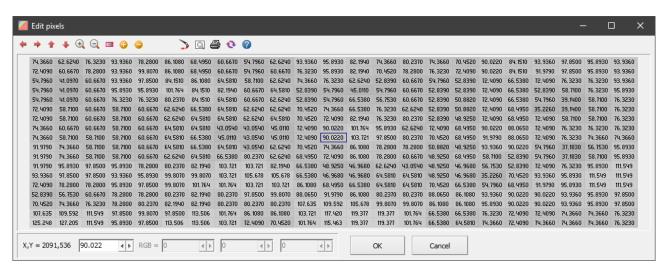
Operativamente le immagini da sottoporre alla misura dovrebbero essere acquisite con il filtro fotometrico **Rc** (Johnson-Cousin) e/o a **647**nm **10**nm (specifico per le polveri). Purtroppo la luminosità delle comete non è sempre tale da avere dei buoni rapporti segnale rumore. Questo può portare ad acquisire immagini senza filtro. Le immagini **NON** filtrate hanno un rapporto segnale rumore decisamente più favorevole, mentre filtrando in **Rc** si ha circa un terzo della luce incidente e per il **647** ancora peggio. Vedi immagini sotto. (C/2014 Q2 – Lovejoy)


Se la cometa in oggetto è luminosa allora anche filtrando otterremo comunque un buon s/n e una buona misura, ma se l'oggetto e debole allora il discorso cambia radicalmente. La soluzione è la somma o la media di più immagini che abbassano il rumore in ragione della radice quadrata del numero delle immagini.

Numero immagini e rapporto segnale rumore (s/n)

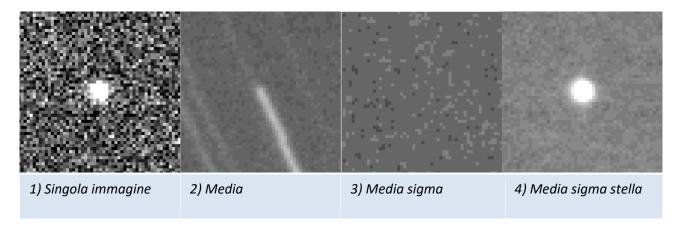

Img.	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
s/n	1,4	1,7	2	2,2	2,4	2,6	2,8	3	3,1	3,3	3,4	3,6	3,7	3,8	4

Singolo frame, Bg: 2408 - Std. Deviation: 67,9


Media di 9 frame, Bg: 2363 - Std. Deviation: 22

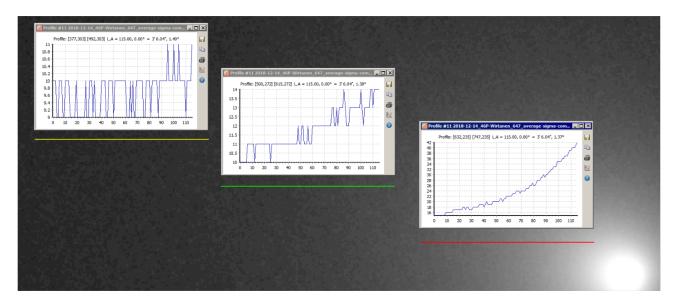
Quando si mediano molte immagini con un s/n basso paradossalmente invece che migliorare il nostro segnale potremmo peggiorarlo. Lo si deve al fatto che le nostre immagini sono a valori interi, del tipo:

Mentre in virgola mobile sono del tipo:



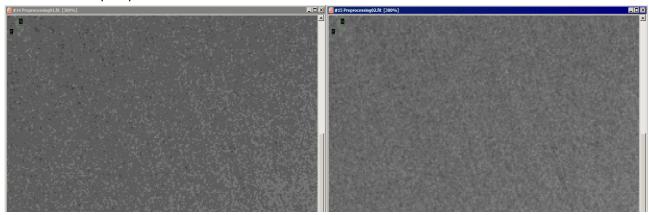
Il fenomeno si chiama posterizzazione ed è facilmente riconoscibile dagli esempi sotto:

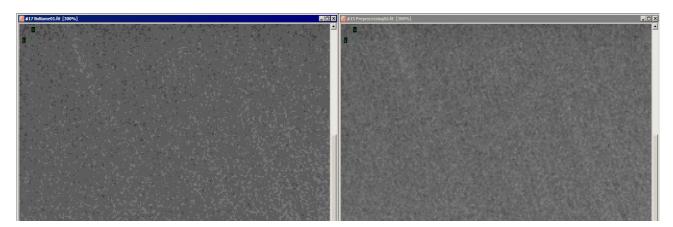
E' immediatamente evidente la perdita di informazione e di appiattimento di ampie zone dell'immagine, siamo passati dall'avere in questo caso 256 tonalità a 16.


Un esempio concreto di quanto detto:

Il disastro se così lo possiamo chiamare è subito evidente. Ma perché ciò avviene?, avviene perché a forza di "pulire" il rumore noi mettiamo a nudo il vero valore (intero) dei singoli pixel che fino a quel momento erano annegati nelle inevitabili fluttuazioni statistiche che chiamiamo sigma.

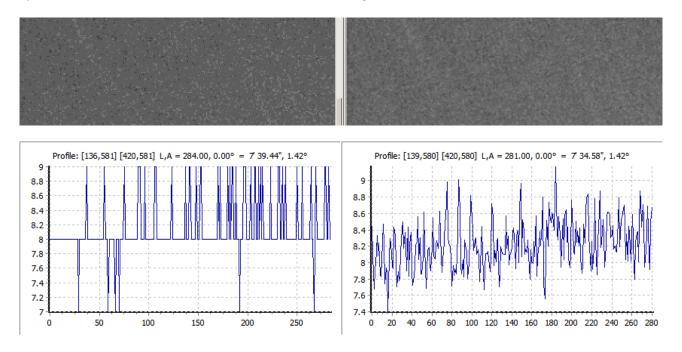
Se medio questi valori: 3,7,5,1,4,6,7,2,7 ottengo 4,66 che sarà arrotondato a 4 o 5, se faccio la mediana ottengo 5. Se utilizzo la virgola mobile il valore è 4,66. Quello 0,66 di differenza fa si che non comparirà mai la posterizzazione e la conseguente perdita di informazione.

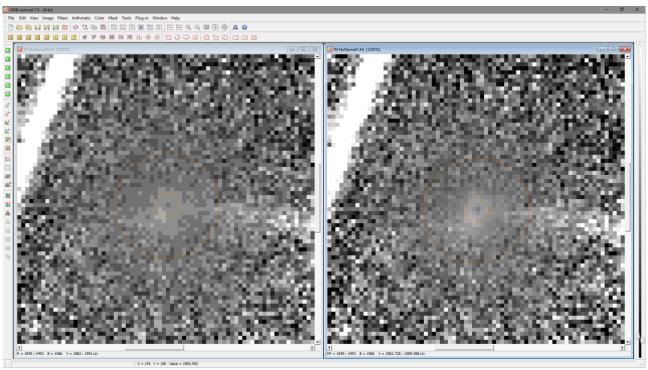

L'immagine sotto (46P-Wirtanen) mette bene in evidenza come nella stessa immagine l'effetto sia differente a seconda della dinamica. L'effetto di posterizzazione è decisamente più evidente nelle zone con poca Informazione, però tale fenomeno puó manifestarsi anche in prossimità del nucleo.


Come possiamo ovviare a questo problema?, ricorrendo alle funzioni di somma o somma-sigma.

Purtroppo per noi cometari le immagini così ottenute non sono leggibili da Winafrho in quanto legge solo file a 16bit (65535 ADU). Esistono diverse soluzioni a questo problema. Una di queste consiste nel dividere l'immagine ottenuta dalla - **somma** – e - **somma-sigma** – per il numero di immagini utilizzate. Per esempio se ne ho sommate 200 il risultato andrà diviso per 200, così da riportare la dinamica entro i 16bit. Purtroppo il risultato della divisione non è come auspicato ed il motivo è che le nostre immagini sono sempre a numeri interi.

Ora alcuni esempi esplicativi:


L'immagine a sinistra mostra un ingrandimento di una immagine pretrattata con il - sigma – e la figura di destra - somma-sigma. E' evidente come l'immagine di destra non presenti l'effetto di posterizzazione, semplicemente per il fatto che l'immagine è una somma. Ora possiamo dividere l'immagine, ottenuta con la funzione somma e/o somma-sigma, per 200 (il numero di frame utilizzati).


A sinistra il risultato, anche in questo caso, NON è come sperato; l'immagine è posterizzata ed il motivo risiede nel fatto che è stata fatta una divisione per interi. L'immagine destra è il risultato della conversione dell'immagine in – Floating point – e poi divisa per 200.

Ora l'immagine è come ci si sarebbe aspettati, e cioè priva del fenomeno della posterizzazione.

I profili confermano la bontà nell'utilizzo dei numeri in virgola mobile.

Asteroide 6478 Gault

Filtro RW su Media (int)

Filtro RW su Media (float)

Se osserviamo attentamente le due immagini vediamo la drammaticità della perdita di informazione, ciò ci preclude poter approfondire ulteriormente quanto è potenzialmente visibile nel falso nucleo.

Queste operazioni incidono sulle nostre misure generando grafici che sembrano simili, in realtà non lo sono. Vedi esempio sotto.

Può succedere che nonostante l'immagine si presenti perfetta per la misura il risultato non altrettanto, viene sempre un plot scalettato. La spiegazione è che considerando la vicinanza notevole delle comete in questione (nell'esempio la 41p che è a soli 0.2518 UA) il programma da finestre molto grandi per la misura. Quindi è necessario, per rimanere sotto al limite delle 100 finestre massime previste dal programma mettere uno step più grande degli abituali 2 pixel. (Il programma propone la dimensione per una finestra di 50.000 km a scendere). Se i valori di afrho sono piuttosto bassi (es. 41P) e ricordando che i valori delle nostre immagini (purtroppo) sono interi, abbiamo per diverse finestre lo stesso valore e quindi uno scalino apprezzabile quando il valore cambia di una unità (le scale x e Y sono proporzionate allo spazio disponibile).

Il programma poi quando fa il plot non fa un'interpolazione ma unisce i punti, vedi immagine sotto:

Cosa è Afp Af[rho]?

La fotometria mediante CCD viene fatta nelle bande standard **R** ed **I** calcolando la quantità Afρ, introdotta da *Michael A' Hearn nel 1982*, espressa in centimetri o metri e correlata alla produzione di polveri. Le osservazioni in **R** ed **I** rilevano per lo più la luce solare riflessa dalle polveri con scarse contaminazioni gassose, generalmente intense invece nelle bande **UBV**.

E' comunque un approccio che si presta a diversi tipi di analisi assai, più avanzate rispetto alla curve di luce visuali, permettendo di indagare in modo più approfondito su diverse fenomenologie.

Afrho è stato introdotto per semplificare la riduzione ed il confronto delle misure fotometriche fotoelettriche a banda stretta effettuate con diversi strumenti. Ma Afrho si è poi rivelato molto versatile nelle misure CCD dove permette una analisi della chioma media e fornisce un dato fotometrico standard confrontabile tra gli osservatori, purché utilizzino una procedura adeguata e filtri standard.

Afrho fornisce un dato indiretto sulla produzione di polveri. Teoricamente è anche possibile un calcolo della produzione di polveri, ma le variabili incognite in gioco sono troppe e questo permette solo un calcolo di minima e massima. Il calcolo inoltre ha senso solo in presenza di comete attive con chioma ben sviluppata e che si avvicinino al modello stazionario. Il che significa che il calcolo di produzioni di polveri durante outburts (stato non stazionario) è privo di senso (diciamo tanto per dare un po' ai numeri...).

Afrho è molto importante come verifica nei modelli inversi della coda, da cui si ricava la produzione gassosa, velocità e massa dei grani, distribuzione delle dimensioni dei grani, ecc... Il confronto tra un Afrho teorico generato dal modello e l'Afrho osservato consente una verifica rigorosa sulla bontà dei dati ricavati del modello e sulla validità del modello stesso. Cosa che è stata fatta da Marco Fulle et. al. (anche noi) nella previsione dell'ambiente polveroso che avrebbe incontrato Rosetta con previsioni che si sono rivelate poi perfette e che quindi hanno permesso di avere da subito una taratura ottimale degli strumenti a bordo.

La possibilità di correggere i dati osservativi per l'effetto di fase consente un efficace confronto tra comete diverse o tra diverse apparizioni sulle periodiche. Il calcolo rigoroso della correzione per l'effetto di fase nelle polveri cometarie è tuttavia ancora un problema aperto e di non semplice soluzione. Diversi approcci divergono sensibilmente per valori limite dell'angolo di fase. Nonostante questo i risultati sono già molto interessanti e rilevanti dal punto di vista scientifico. Infine l'uso dei filtri è un requisito minimo per allinearsi con i professionisti con dati che operino in modo selettivo sulle polveri.

$$Af_{[\rho]} = \left(\frac{2DR}{\rho}\right)^2 \left(\frac{F_C}{F_S}\right) \rho$$

- A è l'Albedo
- f è il fattore di riempimento, cioè quanto i grani di polvere riempiono il campo di vista.
- ρ la dimensione della finestra di misura, generalmente espressa in cm o metri.
- **D** è la distanza geocentrica Terra-Cometa, espressa in cm o metri.
- R è la distanza eliocentrica, espressa in Unità Astronomiche.
- Fc è il flusso di luce osservato della Cometa.
- Fs è il flusso solare a 1 AU.

© 2007 Progetto CARA – Cometary Archive for Amateur Astronomers.

Il CARA (Cometary Archivio per astrofili) è nato da una collaborazione tra un attivo gruppo di osservatori di comete e la collaborazione con il mondo professionale (in particolare Marco Fulle, ma anche da altri professionisti italiani ed esteri). Il nome CARA è stato coniato da da Gyula Szabò (Dipartimento di Fisica e Osservatorio dell'Università Szeged, Ungheria). Visto l'approccio scelto CARA è stato poi modificato in *Cometary Archive foR Afrho*. L'obiettivo di questo progetto è quello

di istituire un database fotometrico sulle comete basato su un programma di osservazione coordinato.

In CARA i dati fotometrici si basano sulla quantità Af[rho], al presente solo continuità di produzione polveri, ma ci sono filtri specifici per lo studio della componente gassosa.

Lo sviluppo e la gestione di questa base di dati è l'obiettivo principale del CARA. Questo progetto è (e probabilmente sempre sarà) un "work in progress". Chiunque può contribuire.

Per produrre dati fotometrici affidabili sono stati definiti alcuni requisiti di base sugli strumenti, strumenti di osservazione e procedure. In particolare sono necessari:

- 1 Un CCD con risposta lineare.
- 2 L'uso di filtri in bande fotometriche standard, come **R** e **I** (Cousins), **R** (Gunn), **S** (Vilnius) per i filtri a **647**nm.
- I dati non filtrati possono essere utili anche per "comete polverose" e/o comete deboli e possono essere presi in considerazione per un primo approccio alla fotometria. Ma è altamente raccomandato l'uso di filtri standard.
- 4 Telescopi riflettori sono preferiti per l'assenza di cromatismo, anche i rifrattori possono essere utilizzati.
- Le immagini devono essere pretrattate (Dark Frame e Flat Field). E' preferibile utilizzare somme di immagini per aumentare il rapporto segnale rumore, e la precisione delle misure.

Ma perché usare la quantità Afrho invece di grandezze classiche?.

Introdotta da A'Hearn (AJ, 89, 579, 1984), la quantità Afrho permette di confrontare facilmente i dati ottenuti con diversi telescopi e sotto varie circostanze geometriche. Si riferisce al modello stazionario di chioma. In questo modello, le misurazioni sono indipendenti dalla dimensione delle finestre di misura. Inoltre Afrho è una quantità comunemente usata dagli astronomi professionisti per studiare la polvere e questo permette un diretto confronto con i dati professionali e aggiunge un contributo diretto alla comunità scientifica.

<u>Circa l'uso di Afrho deve essere chiaro che l'interpretazione di tale quantità non è ovvia o facile.</u> Esso consente di eseguire numerose indagini, ma è valida solo in condizioni strette e può essere pienamente applicata per un numero limitato di oggetti unici.

Per garantire la massima coerenza possibile dei dati, il programma è stato migliorato in diversi aspetti:

- è stato sviluppato sia per piattaforme Windows e inizialmente anche Linux. Questo aiuta gli osservatori a ridurre i dati e standardizzare la procedura.
- Molti osservatori concorrono attualmente per produrre immagini filtrate, soprattutto con filtri R e I.
- Le stelle devono essere vicini al tipo solare (G2V, con B-V tra 0,4 e 0,8).
- Una banda fotometrica specifica è stata aggiunta per comete luminose basate sul filtro 647nm e/o
 650nm, vicino alla banda fotometrica S (Vilnius), Questa soluzione permette di avere valori più precisi di Afrho con contaminazione di gas veramente trascurabile.

I filtri a banda stretta per le comete

I FILTRI PIU' IMPORTANTI PER LE COMETE

Lunghezza d'onda centrata su (nm)	Molecole
390	CN
405	C3
430	CO+
450	Blue Dust Continuum
515	C2
620	H2O+
647 o 650	Red Dust Continuum

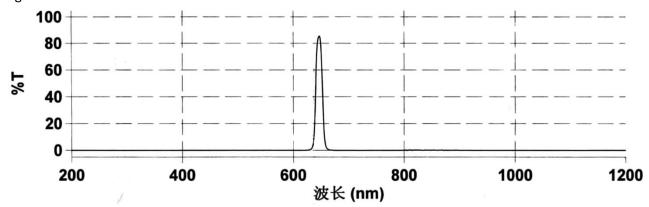
Sono diversi i filtri che potenzialmente si possono usare per la ripresa delle comete, ne è un esempio la tabella sopra. Sono tutti filtri centrati su lunghezze d'onda ben precisi e a banda stretta.

Per i nostri scopi i filtri che verranno usati maggiormente sono due, il primo è l'ormai famoso **R** – Cousin (o Bessel), che dovrebbe essere la dotazione standard per la ripresa delle comete da misurare. L'altro è come detto in altre parti più specifico e praticamente usato attualmente solo dall'osservatorio di Cavezzo, da Daniele Carosati alle Canarie e da Giannantonio Milani, mi riferisco al **647nm** e **10nm** di banda passante.

Curve di trasmissione dei filtri fotometri BVRc.

B = picco a 420nm e trasmittanza del 66%

V = picco a 522nm e trasmittanza del 81%

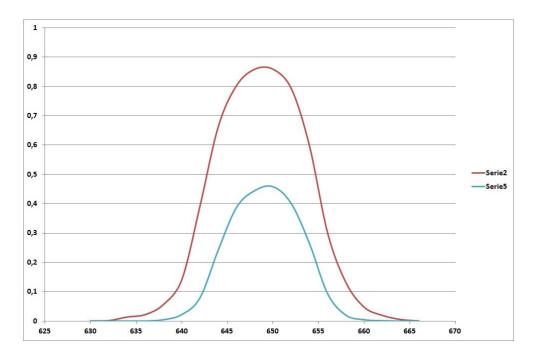

R = picco a 595nm e trasmittanza del 85%

Il filtro a 647nm non è un filtro di produzione come potrebbe essere il 650 che è usato negli scanner dei supermercati e più facile (forse) da trovare. Alcuni di noi ne hanno fatto fare alcuni in Cina e il risultato è stato ottimo.

Datasheet del filtro a 647nm fatto fare in Cina.

		Inst	ection Report for Bandpas	金验报告 ss Filter	
	品类别 Catagory	-	成品出库 Final Prod	报告编号 Serial Number	
订单编号		1	相关标准	MIL-PRE-13830B,MIL-C-67	2015-11-1 SC MIL-STD-105F
PO Number 产品编号		GWS-P	Standards Related		
Part No.		64789100	Dr T80 61	产品名称	BP647/10
产品规格 Dimension		\$to x		产品数量 Quantity	2 Pas
	批次	Mo X	3./0	Quantity	2765
Bat	tch No.		14 at 1. Ja		
			检验内容 Inspection Items		
项目 Item		抽样数量 Insp. Qty (pcs)	检验要求 Requirements	实测结果 Tested Results	检验仪器 Instrument o Tools
	崩ロ Chip	2	∠₀.3	ok	检验仪器 Instrument o Tools
	有效范围				目測
	CA 长度(Φ)	2	40%	ok	Visual 目測
	Length(Dia.)	2	90% (1.0-0.17)	ok	Visual
外观	寛度				游标卡尺 Caliper
Apperance	Width 厚度				游标卡尺
	Thickness	2	2-7.5	0k	Caliper
	面形 Flatness				游标卡尺 Caliper
	光洁度		- 1	-1.	平面平晶
	Surf Quality	2	80/50	ok	Test Plate 目測
	附着力 Adhesion	1	3M限革	ok	Visual
	中心波长			ok	3M Scotch
	CWL(nm) 带宽	2	647 t2 nm	UK	Agilent Cary
	Bandwidth(nm)	2	10±2nm	ok	1000
	峰值透过率 Tpeak(%)	2	>80%	ok	Agilent Cary 1000
光谱检测 Optical Performance	截止范围 Blocking	-	26/-	ok	Agilent Cary
	Range(nm) 截止深度 Blocking Depth(OD)	2	200-1200 nm	ok	Agilent Cary
	其他要求 Others		VV.J		Agilent Cary 1000
	合判定 iclusion	-	合朴	各	

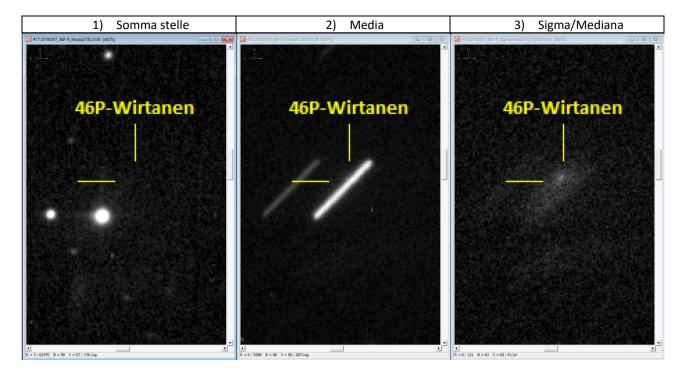
Il grafico del filtro inviato.


La verifica del filtro da parte nostra è stata fatta da Antonio Milani perché ne misurasse effettivamente le caratteristiche, sotto i risultati confrontati con un 647 della Edmund.

- Filtro cinese FWHM 12 nm picco di trasmissione che si avvicina al 90% la campana della curva è leggermente più allargata e la base estrema è di 25 -30 nm.
 Questo spiega l'H-alfa così intensa nella foto di M42.
- 2) Filtro Edmund **FWHM 10 nm** picco di trasmissione poco sopra il **45%** curva a campana più stretta, sui **20 nm** alla base.

L'impressione della prima stima visuale fatta in modo artigianale con il reticolo appare confermata. Le due curve paiono perfettamente in fase quindi il centro banda corrisponde per i due filtri.

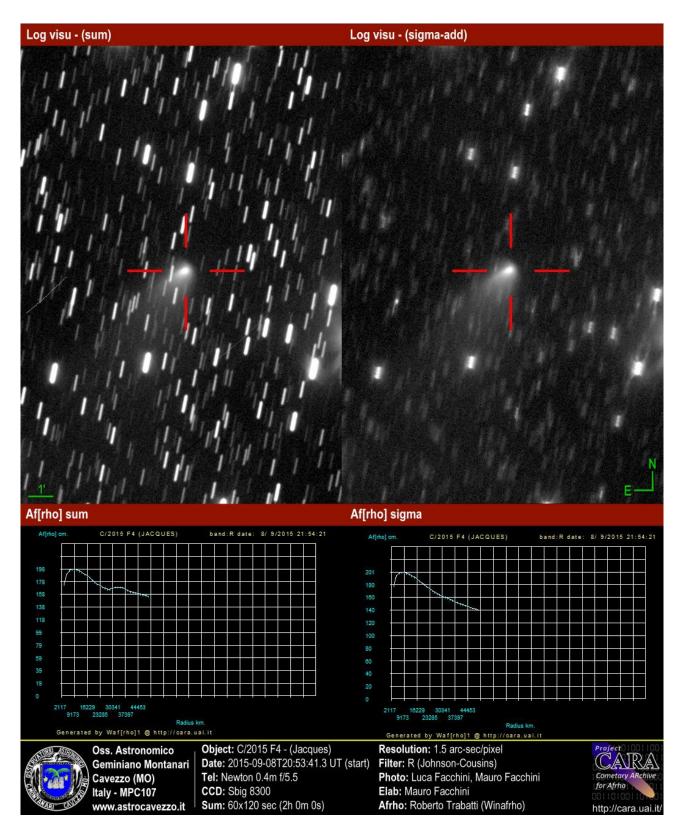
E' rimarchevole il fatto che non ci sono "buchi" (no red/blue leak) tra 200 e 1200 nm e questo è fondamentale.

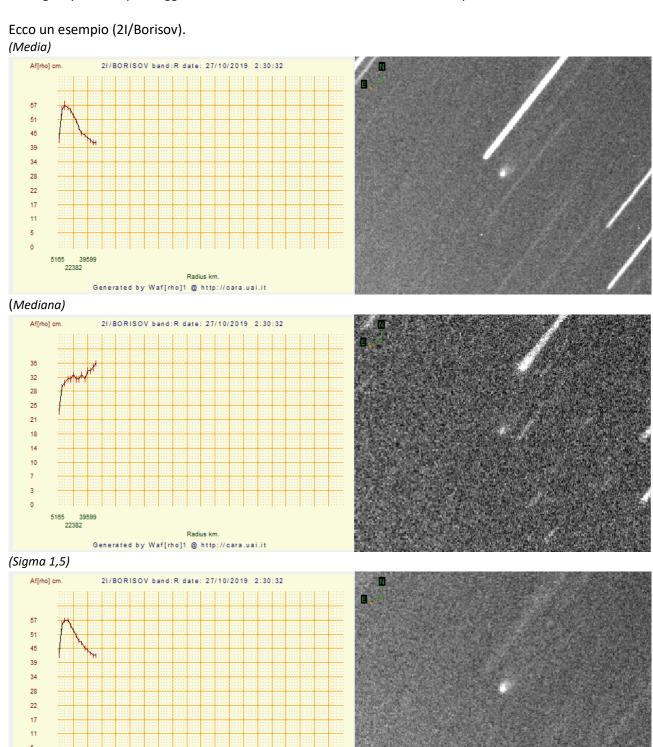

Ecco le curve, Trasmittanza (%). Il picco è 1-2 nm più il là del teorico, sono entro le tolleranze di lavorazione date dai costruttori.

Serie 2 – filtro 647 cinese Serie 5 – filtro 647 Edmund

Meglio misurare sulla media, mediana o sul sigma.

Perché scegliere una o l'altra?. All'inizio dell'avventura CARA si misuravano le immagini utilizzando la media, in certi casi essa comporta delle difficoltà non trascurabili, mi riferisco alle lunghe esposizioni e a campi affollati di stelle. Come sappiamo la misura Afrho viene fatta a finestre via via più grandi, queste possono intercettare stelle che finirebbero nel calcolo, portando a risultai falsati. Emblematico è il caso riportato sotto dove la cometa (46P- Wirtanen) ripresa da Daniele Carosati nel suo osservatorio alle Canarie è letteralmente coperta da una stella luminosa. Si sarebbe potuto nel pretrattamento non utilizzare le stelle che la occultano, ma forse avremmo perso in dinamica con l'incertezza della misura: operazione da valutare con attenzione.


Notiamo come nell'immagine centrale (2) il nucleo è letteralmente nascosto dalla strisciata della stella utilizzando la media, altro discorso per la Sigma/Mediana, dove il nucleo della cometa risulta evidente.


Se invece avessimo tentato di procedere con l'immagine di media non avremmo potuto ottenere niente.

Questo sopra è un caso limite, ma ci sono casi come nell'esempio sotto.

Notare come i due grafici Afrho siano diversi, come forma anche se poco come valore. Il grafico di sinistra è contaminato dalle stelle.

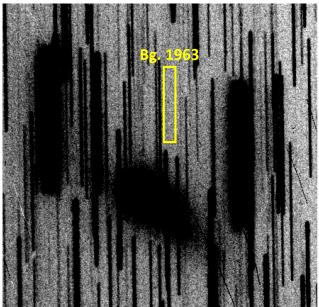
Quanto rilevato sopra vale per una cometa che già possiede una certa luminosità e come detto in altre appendici la misura Afrho risulta relativamente più facile. Nelle opzioni di pretrattamento che vari sw mettono a disposizione si sono principalmente la media/somma, la mediana e la sigma che ci consente di affinare l'eliminazione delle stelle o altre manifestazioni di disturbo che potremmo avere sulle nostre immagini, per esempio, raggi cosmici. Come variano le misure a seconda di quello che usiamo?.

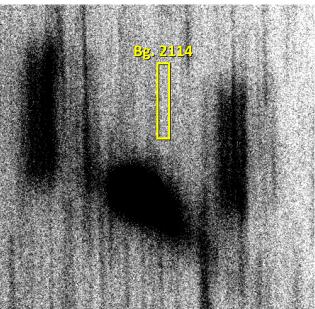
A questo punto possiamo fare due considerazioni, la prima consiste nel fatto che *Media* e *Sigma* si equivalgono, mentre la *Mediana è da sconsigliare*.

39599

Generated by Waf[rho]1 @ http://cara.uai.it

Nella tabella sotto vediamo riportati i valori di background letti in prossimità della cometa (2I/Borisov) e uguale per tutte e tre le immagini.


Media 100 img.	Mediana 100 img.	Sigma 100 img.
3374	3212	4611
Afrho	Afrho	Afrho
57	32	57


A prima vista il valore di Media e Mediana non sono poi così diversi, mentre la sigma si posiziona nettamente più in alto, ma, alla prova dei fatti la misura di media e sigma si equivalgono.

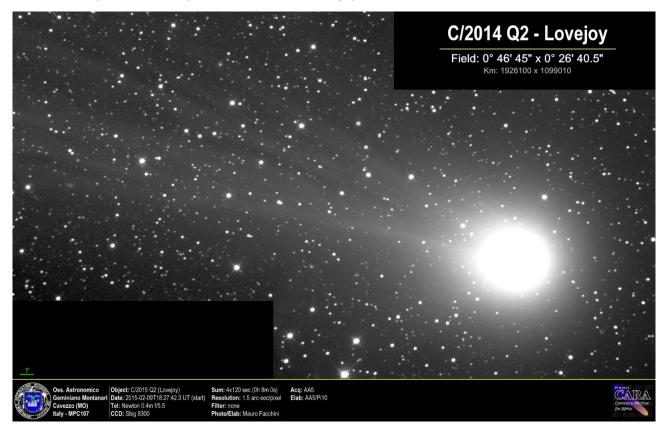
Anche per comete luminose e/o a dinamica elevata la differenza fra misurare sulla Media o sulla Sigma non cambia il discorso, le differenze sono pressoché minime o inesistenti.

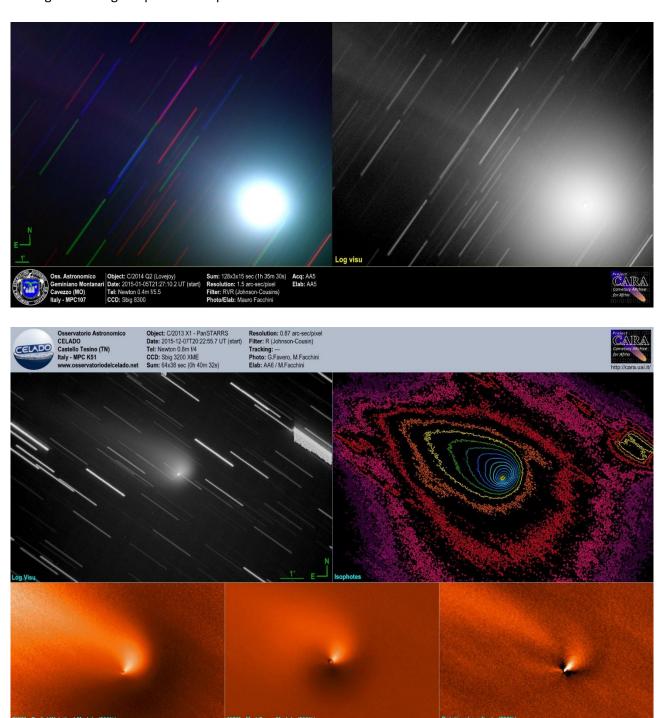
Vediamo un esempio (C/2014 S2-PanSTARRS).

Abbiamo rilevato il bg nell'immagine di Media (sinistra) e di Sigma (destra) nella stessa posizione, nonostante il valore sia differente la dinamica generale dell'immagine non cambia. La conferma dai plot Afrho delle due immagini.

NOTA: prima di misurare il bg bisogna effettuare uno stiramento dell'immagine per evidenziare il confine della **chioma** così da poter scegliere un'area adeguata e non intercettarla.

Il plot conferma che sia che si misuri sulla Media o che si scelga la Sigma come confermato anche per i plot della 2I/Borisov i valori trovati sono molto simili se non identici. Ricordiamo che bastano pochi ADU per cambiare i valori.

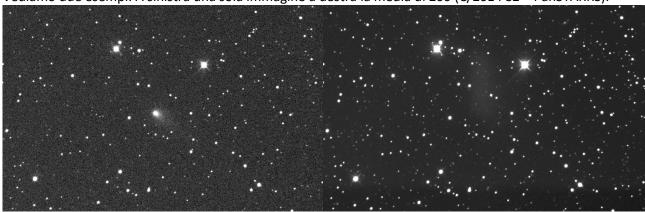

Nella Media c'è contaminazione da stelle e questo lo si nota da una curva leggermente differente in basso. Mentre nella sigma non avendo o se non in minima parte contaminazione stellare abbiamo una curva più


regolare.

A volte la cometa è talmente "grande" da riempire il campo del nostro CCD, che fare?. Una soluzione è quella di o ridurre la focale, che significa cambiare telescopio, oppure riprendere un campo adiacente non contaminato dalla chioma.

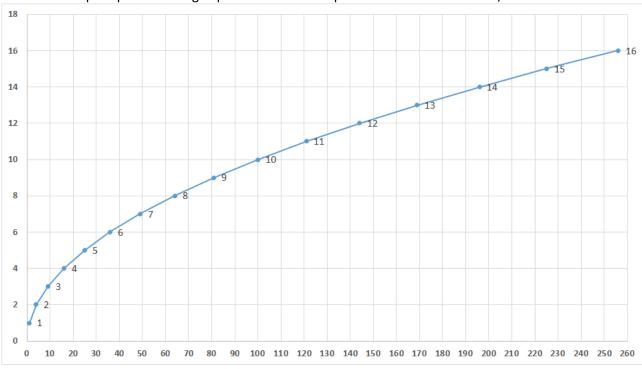
Ecco tre esempi di chiome importanti (C/2014 Q2-Lovejoy, C/2013 X1-PanSTARRS)

Immagini che valgono più di tante parole.



s/n, cosa vuol dire Rapporto segnale rumore.

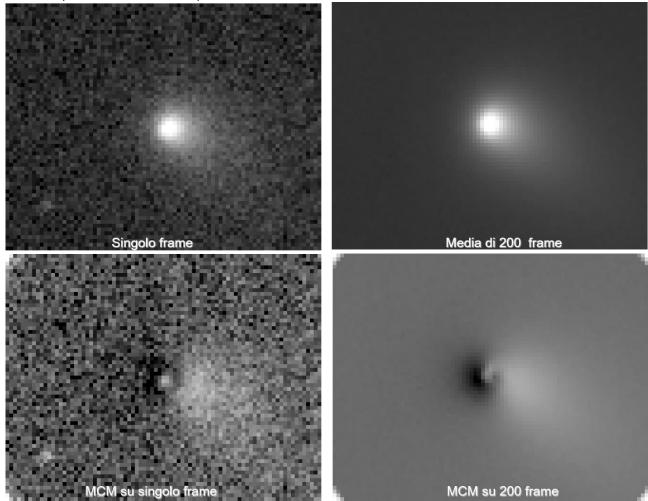
Il rapporto segnale rumore è un indice importante della bontà delle nostre immagine. Qualità che nel nostro caso significa ottenere immagini poco rumorose, tali da poter soddisfare i requisiti che consentano di ottenere buone misure, poco contaminate dal rumore.


Le nostre immagini sono contaminate da tutta una serie di fenomeni elettronici e non che si sommano al nostro segnale degradandolo.

Vediamo due esempi. A sinistra una sola immagine a destra la media di 200 (C/2014 S2 – PanSTARRS).

Risulta evidente l'aumento della qualità dell'immagine mediata (destra).

Vediamo di capire quante immagini possiamo utilizzare per massimizzare il nostro s/n.



Matematicamente parlando il miglioramento del segnale è in funzione della radice quadrate del numero delle immagini acquisite. Il grafico mostra che essendo una curva logaritmica, dopo un certo numero di immagini per ottenere miglioramenti significativi bisogna riprenderne un numero molto alto. Se dobbiamo fare dei flat o dei dark possiamo tranquillamente mediare 9 dark e 20 Flat. Si consigliano valori che siano facili da ricordare, per esempio 4 da un sn di 2, 9 di 3, 16 di 4, 36 di 6 e 64 di 8.

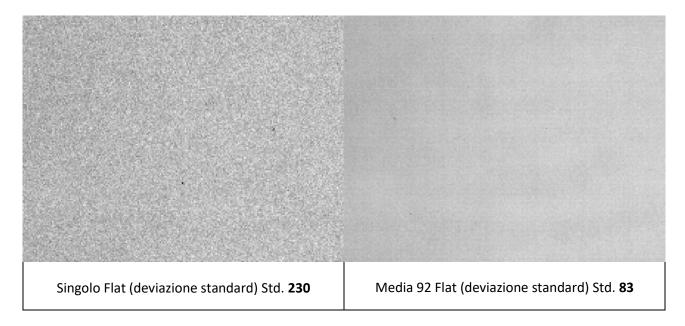
BREVE RASSEGNA DEI RUMORI:

- 1) Bias Frame (segnale proveniente totalmente dai circuiti della camera)
- 2) Thermal Frame (segnale proveniente dal chip durante l'esposizione)
- 3) Readout Noise (rumore generato durante la lettura dell'immagine)
- 4) Dark Frame (somma dei punti 1,2,3) mediarne almeno 9
- 5) Flat Field (è rumore che aggiungiamo NOI ricordiamolo sempre) mediarne almeno 20
- 6) **Conversione** A/D (conversione analogico digitale)

Vediamo praticamente cosa ciò porta.

A sinistra le singole immagini e a destra la media. Il miglioramento è decisamente evidente.

Ovviamente queste regole vanno vagliate cometa per cometa, se vogliamo avere per esempio una ora di esposizione equivalente e sapendo che la cometa si muove velocemente potremmo arrivare a fare anche 400 immagini. Per altre che vanno piano una ora di esposizione equivalente potrebbe darci circa 40 immagini.


Quanto detto sopra vale ancor di più se dobbiamo fare dei flat.

Se avessimo delle ottiche con campo spianato cioè prive di vignettatura e camere CCD a prova di polvere il Flat sarebbe inutile. Purtroppo la realtà non è così e questo ce ne impone l'utilizzo.

Il Flat però è bene ricordare che è un "rumore" che noi aggiungiamo alle nostre immagini.

E' un rumore perché è una immagine che serve per normalizzare il nostro originale correggendone le disuniformità e la differente sensibilità tra i pixel di un array. Tutte queste cause producono un errore di tipo moltiplicativo, dipendente dalla posizione sull'array, quindi dobbiamo far sì che ciò che aggiungiamo sia un "rumore di qualità". Può sembrare strano parlare di rumore di qualità, ma è così, ecco perché e meglio usare una media di almeno 20 Flat o più.

ATTENZIONE: Piuttosto che usare un flat fatto male è meglio NON usarlo.

A tal proposito vediamo un recente esempio di immagini della cometa C/2017 T2 – PanSTARRS riprese da Daniele Carosati e a distanza di 3 giorni dall'osservatorio di Cavezzo. L'interessante è vedere come con strumenti diversi ma applicando il concetto del miglior rapporto segnale rumore la misura risultante sia ottima, e soprattutto quasi identica.

DANIELE CAROSATI	OSS. CAVEZZO
400 Ritchey-Chrétien	400 Newton
3440	2210
FLI PL43 (retroilluminato)	Kaf 16200
0,81 arc-sec/pixel	1,68 arc-sec/pixel
Rc (Johnson-Cousin)	Rc (Johnson-Cousin)
Canarie (Spagna)	Cavezzo (Italia)
80 minuti	120 minuti
122	120
2019-11-30 T23:51:20.6	2019-12-03 T23:01:38.2
	400 Ritchey-Chrétien 3440 FLI PL43 (retroilluminato) 0,81 arc-sec/pixel Rc (Johnson-Cousin) Canarie (Spagna) 80 minuti 122

Nelle immagini che seguono a parte la differenza di risoluzione, maggiore per l'immagine di Carosati 0.81 contro 1.68 di Cavezzo la qualità delle immagini siano evidenti. Da ciò possiamo dedurre che nonostante la differenza fra i due osservatori lavorare su immagini buone conviene sempre.

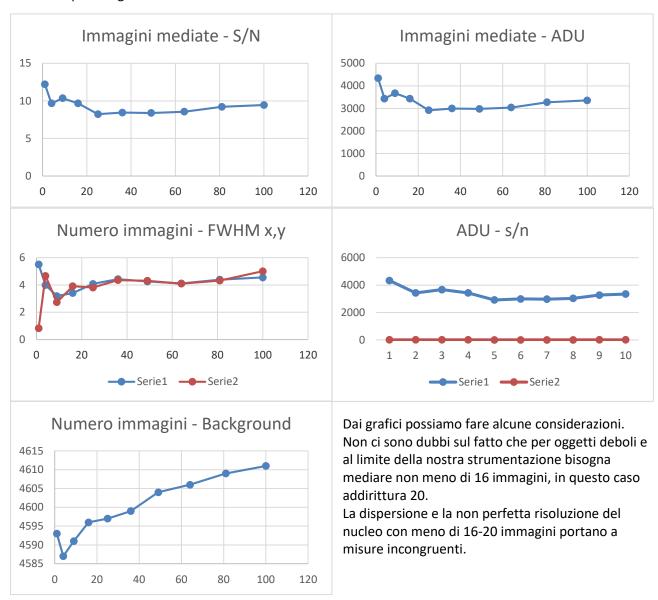
Le immagini.

Quante immagini occorrono per una buona misura?

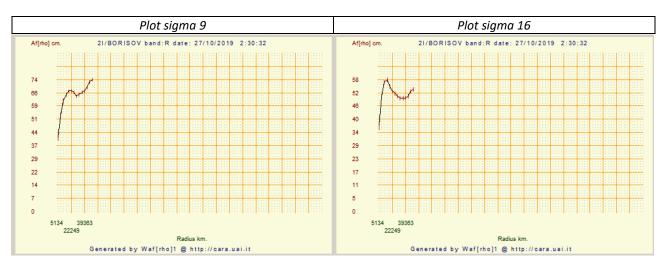

Nelle altre appendici abbiamo scritto più volte dell'importanza di mediare un numero di immagini atto a ottenere la misura migliore possibile. Non abbiamo stabilito concretamente quante immagini servono. Partiamo dal presupposto che una cometa luminosa non darà tutti quei problemi a cui accennavamo nelle appendici, poche immagini e il rapporto segnale rumore diviene importante e le problematiche si riducono all'interno dell'errore da noi considerato nelle misure (10-20%). Il discorso cambia quando abbiamo comete piccole e particolari come lo è stata la 2I/Borisov. Nella tabella sotto è riportato dato un certo numero di immagini quanto cambiano i valori di ADU, s/n, FWHM (xy) e il Background. Ho usato immagini del 27/10/2019 fatte all'oss di Cavezzo.

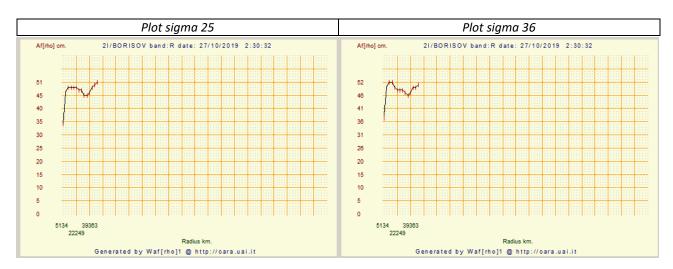
Img. mediate	ADU	SN	FWHM-x	FWHM-y	FINESTRA	background
1	4335	12,21	5,51	0,83	11-5-10	4593
4	3430	9,67	4	4,67	11-5-10	4587
9	3671	10,35	3,19	2,74	11-5-10	4591
16	3431	9,68	3,41	3,91	11-5-10	4596
25	2918	8,23	4,08	3,81	11-5-10	4597
36	2995	8,44	4,43	4,36	11-5-10	4599
49	2978	8,39	4,26	4,31	11-5-10	4604
64	3038	8,56	4,11	4,1	11-5-10	4606
81	3272	9,21	4,39	4,32	11-5-10	4609
100	3353	9,44	4,55	5,01	11-5-10	4611

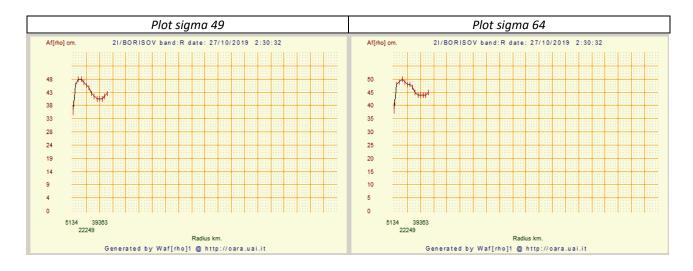
Ovviamente non sono dati esaustivi di tutti gli oggetti deboli che riprenderemo. Riprendere comete e derivarne una metodologia ormai assodata e certa come la fotometria stellare/asteroidale è impossibile.

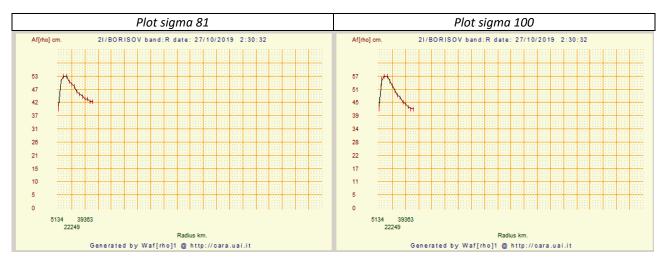

La misura $Af\rho$ (Afrho) è relativamente giovane e, documentazione su come operare con metodologie accertate a parte l'articolo originale non ve ne è.

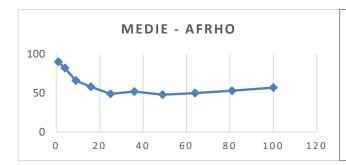
Ecco le immagini mediate.

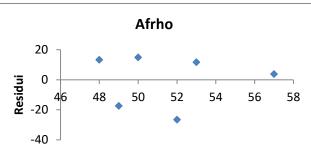

I numeri corrispondono alle immagini mediate.


Vediamo qualche grafico.




A questo scopo ho eseguito le misure di Afrho sulle stesse immagini e ne riporto i grafici.


I grafici di Afrho mettono in evidenza come il s/n sia determinante nell'ottenere misure che abbiano un senso. Già il valore ottenuto dalla media di 9 immagini ha un errore compreso nel range che il CARA si è dato è cioè 10-20%. La curva però non è "buona". Una ulteriore analisi di questi dati andrebbe valutata con molta attenzione. Vero che riducendo la finestra di misura si potrebbe eliminare la successiva risalita della curva, però cambierebbe anche la scala. *Operazioni da valutare con attenzione*.

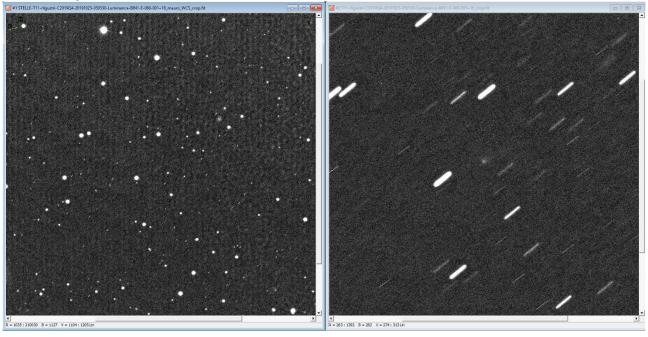

Man mano che l's/n migliora migliorano anche le curve e i valori diventano più simili.

I valori trovati sono:

Immagini	1	4	9	16	25	36	49	64	81	100
Afrho	90	82	66	58	49	52	48	50	53	57

Tralasciando i primi 4 valori che sono inaffidabili gli altri a partire da 25 danno una dispersione che rientra nei valori accennati sopra. Se plottiamo i dati "buoni" ecco il risultato della dispersione.

I telescopi remoti e le misure.

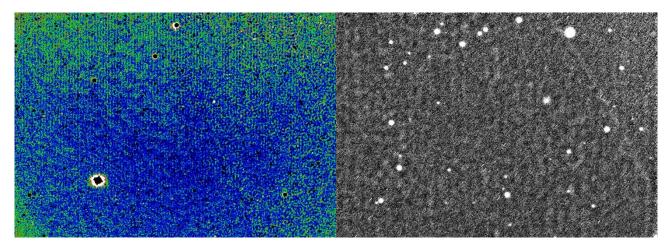

Nel fare qualsiasi tipo di fotometria è essenziale un metodo e avere delle immagini correttamente calibrate. La fotometria Afrho è molto sensibile a piccole variazioni del fondo cielo come già accennato, e può produrre risultati che sembrerebbe essere corretti ma che in realtà non lo sono. Se riprendiamo con i nostri strumenti abbiamo il controllo totale del preprocessing, sappiamo cosa facciamo. Da tempo è in atto un utilizzo sempre maggiore di telescopi remoti sparsi per il mondo. Questo ci permette di riprendere quando le condizioni meteo non lo permettono, oggetti nell'altro emisfero e utilizzare diametri importanti. Il caso che merita attenzione è capitato a Rolando Ligustri sulla cometa interstellare 2I/Borisov (ex: C/2019 Q4) che ha usato un telescopio della rete iTelescope, T11 (note in fondo articolo), situato nel Nuovo Messico (USA).

Il problema erano le misure con valori che immancabilmente erano la metà di quelli prodotti da altri osservatori, perché?. Questi servizi pretrattano loro le immagini (dark e Flat) e poi le inviano ai diretti interessati.

Bene, ma cosa ci arriva?, questo è stato atto di discussione in lista e una volta avute le immagini sono state analizzate scoprendo che "forse" il pretrattamento non è consono ad un utilizzo scientifico delle immagini. E' noto che la stragrande maggioranza del tempo telescopio è ad uso degli astrofotografi, ad essi non interessa che i valori di ADU delle stelle siano lineari, a loro interessa che il fondo cielo sia uniforme e che le stelle siano rotonde, il resto è – **AstroFotoManipolazione.**


Le immagini pretrattate normalmente hanno un fondo cielo uniforme, la distribuzione del valore dei pixel è casuale. A volte anche sulle nostre possiamo vedere delle "strutture", ma questo è principalmente dovuto al fatto che abbiamo sottratto un Dark che è si uniforme, ma quando sottratto e riallineato le immagini mostra una specie di rumore "pseudo ripetitivo". L'esperienza (anni di fotometria stellare e asteroidale) ci dice che questo NON inficia le misure fotometriche perché comunque l'immagine è ancora lineare.

Ecco l'immagine.



A sinistra la somma di tutti i frame. A destra l'allineamento sulla cometa. Notiamo come nel frame di sinistra compaiano delle strutture che con un pretrattamento corretto non dovrebbero esistere. Sembra che si sia utilizzata una qualche forma di pulizia dei difetti da vignettatura ricorrendo a *flat sintetici*. Questi **NON** vanno **MAI** usati per misure di flusso (fotometria).

Ecco l'immagine nel suo complesso ripulita dalla stelle per rendere meglio visibile il fondo cielo.

Per scopi ludici questa immagine non avrebbe problemi, ma per scopi scientifici notiamo come siano presenti tutta una serie di artefatti che inficiano le nostre misure.

Utilizzando una palette in falsi colori rendiamo visibili gli angoli di vignettatura e zone a dinamica ridotta su tutta l'immagine che sembrano fringe, cosa che non può essere, il CCD utilizzato non è un retroilluminato. A destra, dettaglio dell'angolo in alto a sinistra dove si vede bene come la vignettatura sia stata corretta per uso astrofotografico. L'esperienza dice che se abbiamo gli angoli più luminosi del centro non è stato fatto un corretto pretrattamento (scientifico).

Queste operazioni di pulizia postuma non andrebbero usate, noi abbiamo bisogno di linearità di segnale.

Fare fotometria Afrho è già di suo complicato, se poi ci aggiungiamo la non perfetta corrispondenza fra dato luminoso in arrivo e dato in uscita possiamo generare dei numeri che sono senza senso.

A questo punto una raccomandazione: se usiamo telescopi remoti nonostante siano equipaggiati con filtri fotometrici come il telescopio usato, facciamoci dare tutti i file per il pretrattameto, oppure fare una analisi sulle immagini inviate e se non conformi, chiedere come pretrattano, infine confrontare le misure ottenute con altri.

iTelescope T11

Telescopio

Observatory : New Mexico Skies at Mayhill, New Mexico - MPC H06 Telescope : 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer

CCD

CCD : FLI ProLine PL11002M CCD camera

QE : 51% Peak

Full Well : ~60,000e- Anti Blooming Gate (ABG)

Dark Current : <.03 e-/pixel/sec. @ -35° C

Pixel Size : 9μm Square

Resolution : 0.81 arc-secs/pixel

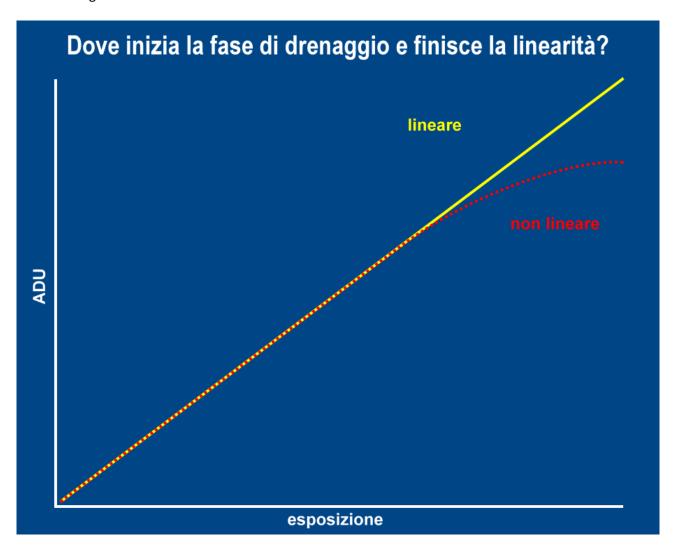
Sensor : Frontlit

Cooling : Set to -30°C default

Array : 4008 by 2672 (10.7 Megapixels)

FOV : 36.2 x 54.3 arc-mins

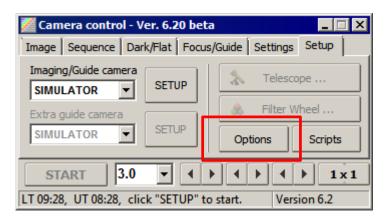
Filters : AstroDon - Luminance, Red, Green, Blue. 3nm Ha3 50R, Sii3 50R, Oiii 50R. U, B, V, R, I

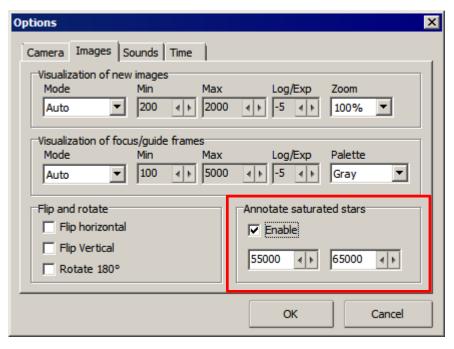

Position Angle : 271º

Stelle/Comete e saturazione del nucleo.

Questa che descriverò è una funzione specifica per chi utilizza il software Astroart durante le acquisizioni, non mi risulta che altri sw facciano una cosa simile.

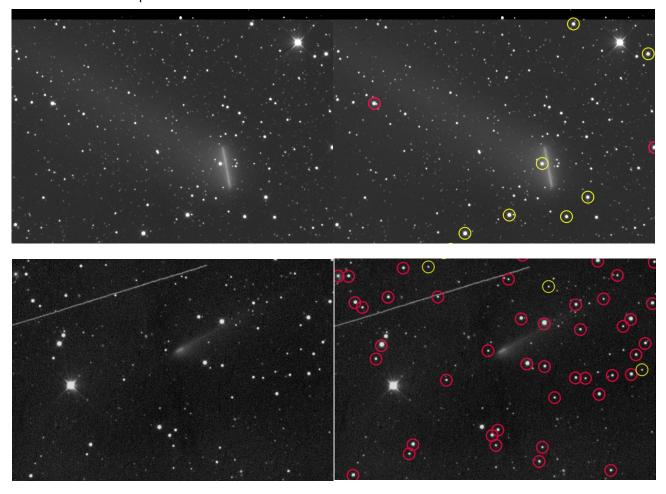
Lo strumento non è perfetto, ma ci può essere utile durante le sessioni di ripresa. L'idea nasce dal fatto che mentre noi riprendiamo non abbiamo subito la percezione se le stelle di riferimento o addirittura il nucleo della cometa siano vicino alla saturazione. Se le stelle sono particolarmente luminose è evidente che saranno sature, non ci vuole uno strumento a dircelo, ma in certi campi affollati di stelle simili saturare stelle di tipo solare che sono quelle usate è più difficile.

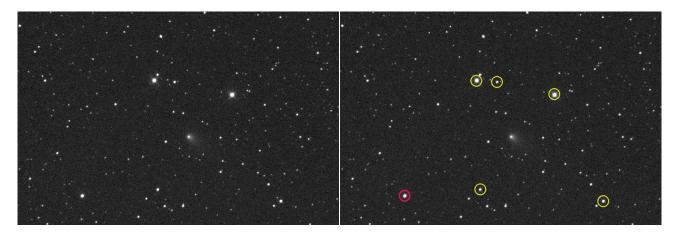

Intanto vediamo una immagine che ci mostra la differenza fra un sensore lineare e uno con il dispositivo di antiblooming.


Purtoppo i sensori senza antiblooming ormai sono una minoranza, l'effetto delle righe verticali disturba l'immagine per scopi estetici. Nelle nostre camere abbiamo sia sensori Kodak che possiamo ancora trovare senza antiblooming che con e i sensori Sony che lo hanno tutti. Recentemente sono stati introdotti sensori dalla Kodak che hanno si il dispositivo di antiblooming, ma implementato in maniera tale da non disturbare e a cercare di mantenere una linearità accetabile. Altro problema è la FWC o Full Whell Capacity, cioè la capacità di incamerare molti fotoni. E' noto che con pixel da 24μm e con FWC di 100000 elettroni avremo una capacità maggiore di un CCD con pixel da 6μm e una FWC di 40000 elettroni. Il secondo saturerà molto

prima del primo. A parte queste disquisizioni possiamo in un qualche modo avere uno strumento che faccia il lavoro per noi, si, in Astroart è stata implementata una soluzione che come detto sopra non è perfetta ma risulta molto utile. L'aumento della saturazione delle stelle e del nucleo cometario potrebbe derivare anche dall'altezza sull'orizzonte. Se siamo bassi la massa d'aria assorbira più luce, ma a salire la massa diminuisce ed entrerà più luce sul CCD. In pratica partiamo senza saturare e finiamo con stelle di riferimento sature. E nucleo saturo. Sessione da buttare.

Intanto dove troviamo questa funzione. Apriamo Astroart e in [Plug-in] – [Camera contro 7.0] apparirà la figura sotto. Selezioniamo [Options].

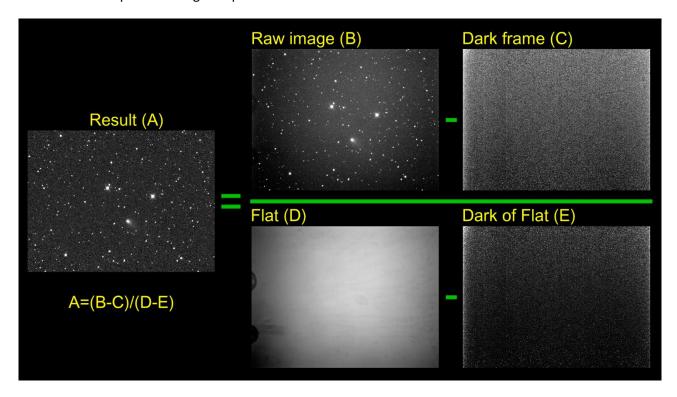

Al comparire della finestra di [Option] andiamo su [Image] e vedremo la schermata sotto.


Dove possiamo settare i campi di linearità e di attenzione. Attivando la funzione diciamo ad Astroart che tutte le stelle che troverà nel campo e che superano il valori di 55000 ADU le stelle saranno circolate di giallo, mentre quelle che superano il valore di 65000 ADU saranno circolate di rosso.

Se a priori abbiamo verificato con Wiafrho quali stelle di tipo solare sono presenti potremo verificare se le abbiamo saturate oppure no.

Vediamo alcuni esempi:

E' possibile attivare la funzione anche su immagini non acquisite da Astroart tramite una scorciatoia da tastiera premendo [Ctrl+Shift+s] come esempio sotto.

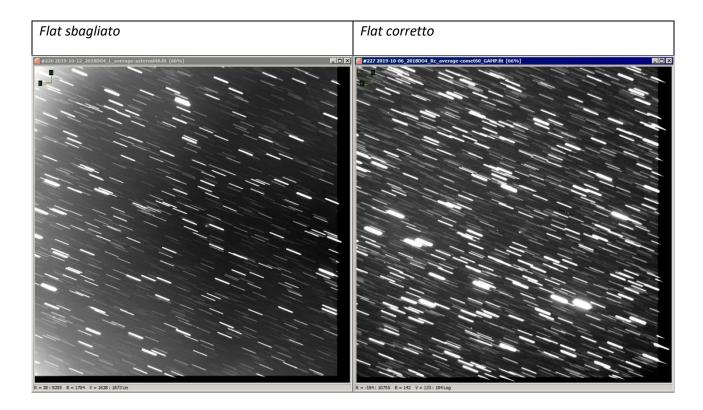


Il pretrattamento

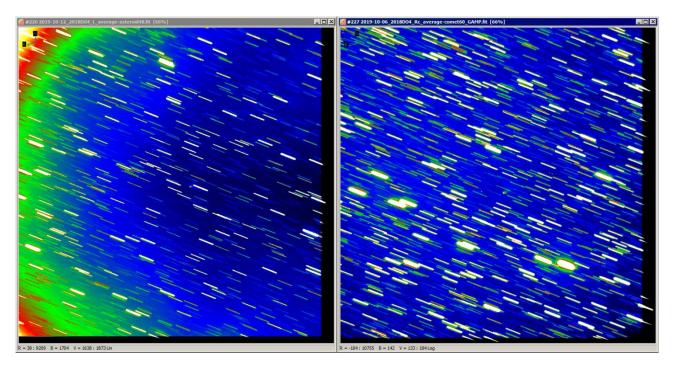
E' un dato di fatto; o si pretrattano correttamente le immagini, oppure le misure (fotometriche) che otteniamo hanno **poco o nessun valore scientifico.**

Pretrattare vuol dire mettere in atto quelle poche operazioni di pulizia che dovrebbero essere una operazione standard, mi riferisco alla sottrazione del Dark (media di 3 o 9 immagini) fatto alla stessa temperatura e esposizione delle nostre immagini, al Flat, vero spauracchio su come va fatto, non viene mai come uno vorrebbe. E' diffuso l'assioma che il Dark per il mio CCD non serve, tanto ha poco rumore e il Flat, meglio farlo sintetico, sbagliato, noi misuriamo un flusso e quel flusso deve essere lineare.

Riassumiamo in questa immagine il procedimento corretto.



I passaggi sono concettualmente semplici, dobbiamo sottrarre ad ogni immagine l'immagine di Dark che contiene rumore termico. Successivamente bisogna dividere (normalizzazione) la nostra immagine per l'immagine di Flat.


Qua non si fa riferimento ad alcun software, tutti hanno processi che automatizzano queste operazioni per lotti di immagini.

Ora vediamo un esempio di utilizzo di un flat che sembrava fatto a regola, ma che invece ha portato a differenze tali da renderlo dannoso in fotometria.

Le immagini provengono da due sessioni osservative sull'asteroide/cometa A2018 DO4 fatte all'osservatorio di San Marcello nelle date del 6/10/2019 con filtro fotometrico Rc e utilizzando un Flat fatto con pannello e luce esterna, l'altra è del 12/10/2019 utilizzando un flat fatto sulla cupola, palesemente non illuminata correttamente.

Utilizzando una palette in falsi colori vediamo come le differenze di luminosità siano elevate.

Il Flat Field.

A questo punto possiamo fare una disgressione su come realizzare i Master Flat Field. Le tecniche sperimentate da ognuno di noi sono le più varie, e i risultati idem. E' un aspetto delicato per chi si avvicina per la prima volta (e non solo) all'astronomia digitale.

Prima di iniziare è necessario fare una considerazione molto importante. Il Flat da noi realizzato deve essere fatto secondo i metodi descritti, e dovrà risultare "fotometricamente" corretto.

Non è accettabile utilizzare Flat Sintetici (via software) realizzati solo per fare dell'imaging e per avere il campo spianato. Inoltre bisogna utilizzare la stessa identica configurazione ottica usata per la ripresa delle immagini: stesso fuoco e stesso filtro. Aggiungiamo che il Flat dipende dal colore della radiazione e questo dovrebbe portare a realizzarne uno per ogni filtro usato (per filtri in banda stretta). Se in banda larga diviene importante lo spettro della sorgente utilizzata, diversa, dalle sorgenti astronomiche, potendo introdurre errori sistematici.

Sarebbe interessante sapere a priori anche la linearità della nostra camera CCD. E' risaputo che le camere moderne con sistema antiblooming non sono perfettamente lineari, da test fatti risulterebbe che solo fino ad un certo punto sono lineari, nel nostro caso Kaf 16200 fino a circa 8/9000 ADU. In letteratura si è sempre detto che un buon flat dovesse avere valori di ADU all'incirca a metà della dinamica dei 16 bit, ossia intorno a 30000 ADU. Purtroppo le nostre camere CCD non sono delle 16 bit anche se il file viene salvato a 16 bit, i conteggi all'interno del FIT indicano valori a 16 bit, ma in realtà spesso si fermano a 12, 14 o 15 bit.

Un esempio, la nostra camera CCD in **binning 1x1** ha una capacità (Full Well Capacity) di **~40,000e-** e un rumore di lettura (Readout Noise) di **9e-**.

Se dividiamo **40000 / 9 = 4444** otteniamo la vera dinamica del nostro CCD, ovvero **4096 ADU**, che è il risultato di **2^12**, - circa un po più di **12 bit di dinamica**.

Ora appare evidente come i nostri **4444 ADU** non siano valori di metà dinamica di un 16 bit. A questo punto come li facciamo.

- Li dobbiamo fare a metà dinamica (16 Bit) circa 30000 ADU? (come si è sempre letto in letteratura?).
- Li dobbiamo fare nella zona di linearità circa 8000/9000 ADU? (nel mio caso Kaf 16000).
- Li dobbiamo fare a metà della vera dinamica del CCD/CMOS?.

Bisogna fare delle prove tenendo presente che in letteratura viene indicato di farli con un Bg che sia circa i 2/3 della dinamica del proprio CCD.

Quale valore dovrà avere il nostro Bg del flat se lo facciamo alla vera dinamica del nostro CCD/CMOS?. Ci facciamo aiutare da un paio di formulette.

Esempio:

Dinamica: **40000** FWC Rumore di lettura: **9e**

- Troviamo i veri ADU del nostro CCD/CMOS: (FWC / Rumore di lettura), 40000 / 9e = 4444. Ce la vendono con una capacità di 40000 elettroni, in pratica con un rumore di 9e elettroni ci ritroviamo con solo 4444 di ADU. Ecco perché adesso si raggiunge la saturazione molto prima di quando si usavano i vecchi CCD, che avendo pixel più grandi avevano di conseguenza una FWC molto maggiore.
- dividiamo **4444** / **65535** (16bit, dinamica del convertitore) = **0.610** il risultato sono gli elettroni (**e**) per **ADU**.
- Dividiamo la nostra vera dinamica per gli elettroni per ADU, **4444** / **0.610** = **7281** e troviamo a quale valore (circa) di Background dobbiamo fare i nostri Flat.

Le quattro macro categorie su come realizzarli:

- 1) Ripresa di un pannello all'interno della cupola (Dome Flat) uniformemente illuminato da una sorgente di luce artificiale a spettro continuo e bianca, come nei grandi osservatori.
- 2) Pannello luminoso regolabile, posizionato davanti al telescopio o appeso alla cupola/muro.
- 3) Ripresa di uno Sky Flat utilizzando la luce proveniente dal cielo, possibilmente allo zenit per evitare gradienti (all'alba o al tramonto).
- 4) Dark Sky Flat, ovvero ripresa di una regione di cielo poche stelle e/o nebulosità.
- (1) Il primo metodo è facile da realizzazione in qualsiasi momento della notte. L'unico problema consiste nell'illuminare uniformemente il pannello, facile a dirsi, meno a farsi. Se il campo di ripresa è piccolo tipo 13x13 primi non si avranno delle grosse variazioni di luminosità, diverso se il campo è grande, tipo 60x30 primi. I problemi di illuminazione possono portare a errori di 1, 2% (stima) e non di frazioni di percento come auspicabile per una precisa fotometria.
- (2) Da un po di tempo si sono diffusi dei pannelli retroilluminati a led che oltre ad avere un sistema di riduzione/regolazione della luce hanno anche discrete dimensioni, tipo 50x50cm. Sono molto usati dagli astrofotografi. Riguardo all'uniformità, se le dimensioni del pannello sono sui 20, 25cm non ci dovrebbero essere grossi problemi, ma quando sono sul mezzo metro il discorso potrebbe non essere quello che cerchiamo. E' possibile realizzare il flat in qualsiasi momento, anche ad osservatorio chiuso. Esiste anche un altro metodo che è quello che utilizziamo all'osservatorio di Cavezzo, consiste nel sistemare davanti alla bocca del telescopio un pannello di plexiglas opalino, non traslucido. Fuori dall'osservatorio alla distanza di circa 15 metri è posizionata una lampada sferica opalina si circa 25 cm di diametro con all'interno una lampada led sempre opalina. In tanti anni è il metodo che ci ha permesso di ottenere risultati uniformi e ripetitivi. E' da farsi senza la Luna in cielo...
- (3) Veniamo allo Sky Flat. Essendo la luminosità del fondo cielo in calo o in aumento a seconda se li facciamo al tramonto o all'alba bisogna determinare quale è il tempo ottimale di esposizione. Alla fine otterremo una serie di immagini con valori di bg (background) variabili, in discesa se ripresi alla sera, in salita se ripresi al mattino. Sulle immagini riprese allo zenit potrebbero venir registrate stelle, buona norma è lasciare spento il trascinamento del telescopio, così da ottenere stelle strisciate. Attenzione ai veli o nuvole alte, non è infrequente essere sicuri della bontà del cielo e poi ottenere Flat che non correggono bene le nostre immagini.

Se dobbiamo cambiare l'esposizione per via del calo o aumento di luce dobbiamo di conseguenza rifare anche i relativi Dark. E' risaputo che anche lo Sky Flat non ha una perfetta corrispondenza fra la luce crepuscolare e quella delle osservazioni, ma è un problema minore.

(4) Sarebbe la tecnica ideale, però la luminosità del cielo risulta molto bassa (nella regione ottica) e si ottengono immagini con bassi valori di S/N. Il vantaggio è che il colore della sorgente (cioè del cielo notturno) corrisponde esattamente a quello del cielo durante le osservazioni. Che è il flat ideale lo si può sperimentare dividento la prima immagine con l'ultima (come se fosse un flat) di una sequenza. A parte il risultato inconcludente il risultato è una uniformità del fondo cielo perfetta. Realizzarlo è semplice, ma richiede sprecare almeno quasi una ora supponendo di fare 20 flat da due minuti e almeno 9 dark da altrettanti minuti di esposizione. E le stelle?, in due o tre minuti di esposizione sicuramente avremo stelle luminose, poi fra una posa e l'altra bisognerebbe muovere il telescopio per evitare sovrapposizioni di stelle, alla fine pretrattare con mediana e/o sigma.

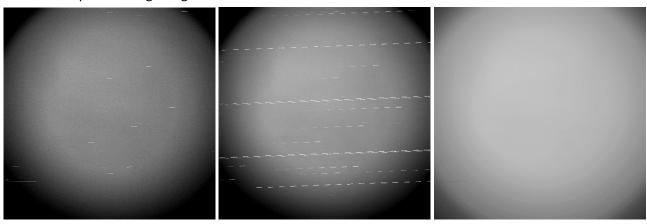
I metodi **1** e **2** non pongono particolari problemi, se l'illuminazione è uniforme il Bg di ogni flat sarà più o meno identico entro pochi ADU. In fase di pretrattamento sia che si usi la media o la mediana il risultato sarà conforme.

Il discorso cambia con gli Sky Flat (metodo 3), purtroppo la luce cambia durante la sessione di ripresa e questo porta ad avere dei valori di Bg e dinamica differenti. Questo inficia il buon ottenimento del nostro master Flat. Le operazioni di media e mediana vengono corrette solo e solo se si utilizzano immagini con Bg,

similari. Se tentiamo l'operazione di media/mediana su immagini con Bg differente **NON** otteniamo un Flat corretto.

NB.

Purtroppo il procedimento che Martino aveva descritto sul suo Blog che alla fine consisteva in un semplice spostamento di offset del Bg è risultato non corretto come vedremo dalle immagini più avanti.


Il tutto nasce dalla richiesta fattami da Luca Buzzi dell'osservatorio Schiapparelli di Varese di "normalizzare" una serie di Sky Flat. Seguendo il metodo di Martino e utilizzando una macro ho fatto si che tutti i Bg fossero identici. Si realizza leggendo il Bg, della prima immagine, leggendo il Bg delle immagini seguenti e operando una operazione di shift. In pratica se avevo un Bg di **10000** sulla prima immagine, un valore di **15000** sulla seconda si trova la differenza: **15000** – **10000** = **5000** e poi con il comando di offset si opera uno shift di **5000** portando il nuovo Bg, della seconda immagine ad avere un valore di **10000**.

Pretrattando con l'operazione di mediana per eliminare le strisciate, il risultato non è stato quello che mi aspettavo, I primi dubbi..., ho ripretrattato operando con la sigma che effettivamente ha eliminato le stelle, ma il flat non era corretto, sì alla vista era pulito ma la dinamica era totalmente sbagliata.

Mi fu chiesto di mandargli tre flat con Bg differenti. Anche qui ho operato con una operazione di shift. Il primo aveva valore di circa **11000**, il secondo **15000** e il terzo **25000**. Inviato le immagini, di ritorno una mail con scritto che quello che aveva il valore medio (**15000**) era quello che meglio spianava il campo!?. A questo punto la confusione era palese.

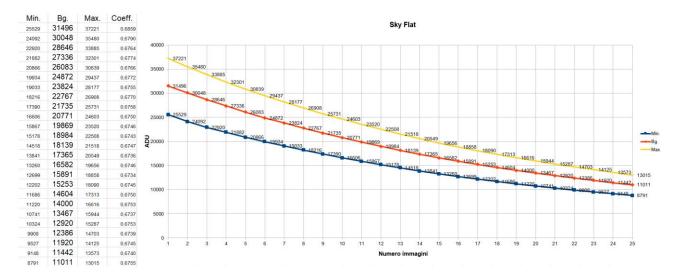
Ma come poteva essere?, purtroppo in letteratura non ho trovato (io) niente che mi aiutasse a capire.

Vediamo un po di immagini e grafici.

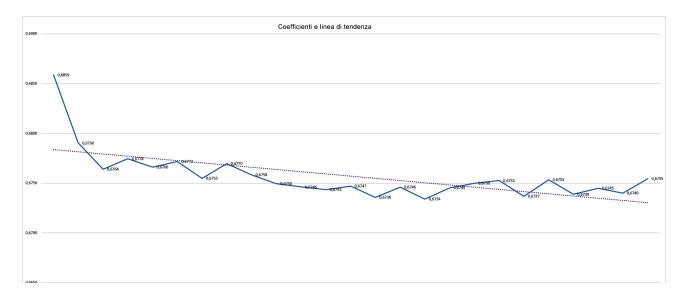
La prima immagine a sinistra è un singolo flat, al centro la somma di tutti gli sky flat e a destra la sigma. Sono evidenti nelle prime due immagini le strisciate lasciate dalle stelle.

Ora applichiamo i nostri flat (Bg. 11000, 15000 e 25000) alle immagini e vediamo il risultato.

L'immagine di sinistra con Flat a 11000 al centro quello a 15000 a destra quello a 25000.

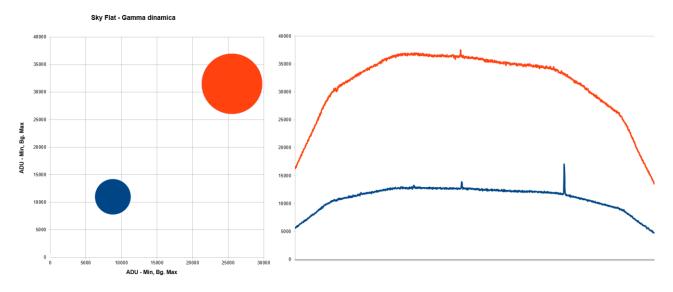

Il risultato parla da solo, operazione completamente sbagliata.

Una soluzione/intuizione (*rivelatasi sbagliata*) è stata: se le tre immagini sono differenti e si passa da immagini con il bordo bianco ad immagini con bordo nero è possibile che vi sia un flat con un valore tale da spianare il campo. Dopo tante prove, spostando di offset in più e in meno quello a Bg **15000** con passi di **100** sembrava che intorno a **18000** il flat operasse in maniera più efficace. In realtà rimaneva sempre una differenza fra i bordi e il centro immagine. Fin qua (esteticamente) si sarebbe potuto anche utilizzare questo nuovo flat, ma fotometricamente?, grosso dilemma.


Non rimaneva che operare sui numeri e tentare di capire il perché del fallimento dell'operazione di "normalizzazione" dei flat non aveva sortito il risultato sperato.

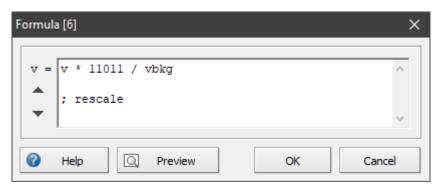
Vediamo alcuni grafici.

Nella prima colonna abbiamo il valore minimo, nella seconda il Background, nella terza il valore massimo e nella quarta il coefficiente dato dalla divisione fra il valore più basso e il più alto.


Risulta evidente come i 25 flat presi in esame NON abbiano un andamento lineare. Se lineare si sarebbe forse potuto (condizionale) utilizzare (in pratica no) lo stesso coefficiente come il grafico sotto, che ci dice che nemmeno i coefficienti, anche se di poco, non hanno un andamento lineare.

Seguono una curva. Da ciò si deduce che, utilizzando la normalizzazione (shift) del bg non avremmo potuto ottenere un buon flat. Facendone la media o la mediana è come se avessimo usato il flat che più o meno sta a metà tralasciando gli altri con conseguente perdita di s/n.

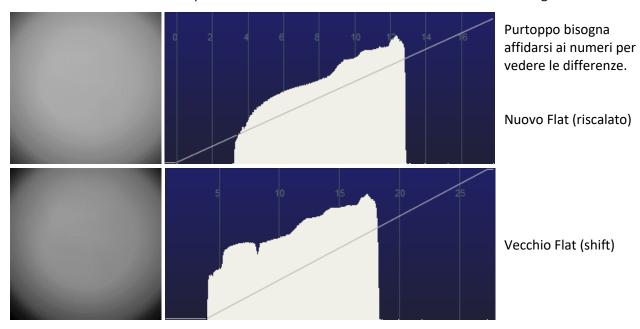
I grafici che seguono sono semplicemente l'analisi del primo e ultimo della serie. Il primo è un insieme del valore minimo del background e del massimo (ADU), il secondo è ottenuto dal profilo partendo dallo spigolo in alto a sinistra verso lo spigolo in basso a destra.


Come è facile intuire l'area sott'intesa dal primo grafico ci dice che la dinamica della prima immagine (arancione) è diversa dall'ultima (blu). Il grafico di sinistra conferma quello di destra, nonostante i loro coefficienti siano similari 0,6859 contro 0,6755 ciò non è sufficiente nonostante una variazione di solo il 2% per ottenere buoni flat.

Il metodo corretto nasce da una chiacchierata con Fabio autore di Astroart che illuminatomi sulla matematica di questi "giochi" mi ha fatto venire in mente che già io quando faccio un mosaico con due immagini FITS a dinamica differente non normalizzo (shift del bg) ma "riscalo", è stata la folgorata decisiva. In effetti se uno ci pensa i flat sopra sono si differenti ma se li riconduciamo ad un valore unico di Bg e dinamica utilizzando i coefficienti, le immagini risultanti potranno essere inserite nelle finestre di pretrattamento e dopo Mediana e/o Sigma otterremo un Master Flat idoneo e fatto a regola d'arte, avranno tutti la stessa dinamica.

In Astroart non c'è (per ora...) un automatismo che faccia questo lavoro da solo, però possiamo o armarci di calcolatrice e fare i conti a mano oppure utilizzare le formule di Astroart andando in [Arithmetic] – [Formula], scrivendone una noi come quella sotto che è la formula da usare. Si potrebbe anche realizzare uno script che automatizzi questa operazione.

Spieghiamo la formula, in pratica si prende un valore di riferimento, nella formula sopra è **11011** che era il Bg della prima immagine di Flat e che ho deciso di usare. Leggo il Bg (vbkg) della seconda immagine (**11442**), divido il Bg della prima (**11011**) per il Bg della seconda (**11442**) e trovo il coefficiente di moltiplicazione.


11011 / 11442 = 0,96233176

a questo punto posso moltiplicare il Bg della seconda immagine (11442) per il coefficiente ottenuto ottenendo:

11442 * 0,96233176 = 11011

Il risultato (è identico al Bg della prima immagine) è la corretta "riscalatura" dell'immagine. Avendo la [Formula] una scorciatoia da tastiera [Ctrl+Y] e facile anche se manualmente applicarla alla nostra ventina di Flat, non si perde tanto tempo.

Ovviamente ho messo alla prova questa procedura utilizzandola per fare un nuovo Master Flat per Varese. C'è voluto un po di tempo e di scorciatoie da tastiera, ma alla fine dopo aver riscalato e memorizzato 100 flat li ho messi nella finestra di pretrattamento realizzandone sia uno Mediano che uno Sigma.

Messo alla prova il metodo ecco il risultato.

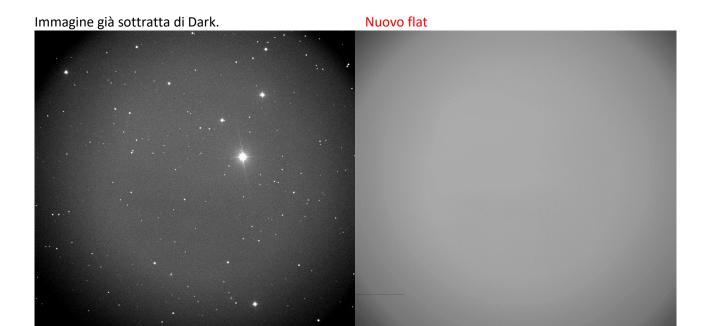


Immagine / Nuovo Flat (riscalato)

Immagine / Miglior Flat (vecchio metodo)

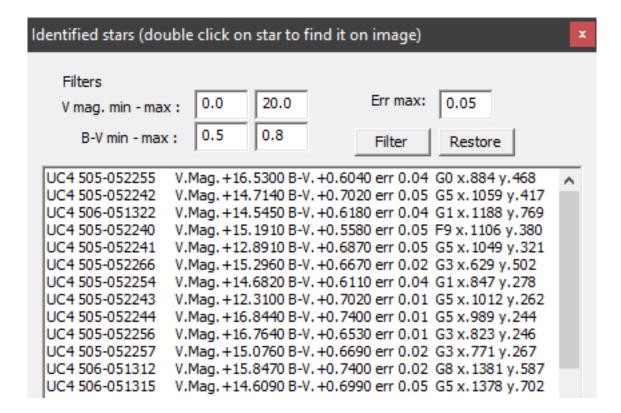
E' evidente come il nuovo flat abbia corretto magistralmente l'immagine, spianandone il campo. Così operando possiamo essere sicuri di avere immagini "corrette" fotometricamente, con valori che saranno i più precisi possibili dati dalla nostra strumentazione.

Metodo di misurazione: il filtro delle stelle di tipo solare e il B-V.

Da quando (primi anni del duemila) misuriamo la quantità Afrho il software e il metodo sono cambiati. Abbiamo introdotto per esempio il multiplot che ci permette di fare fotometria a tutte le stelle di tipo solare trovate nel campo, miglioramenti vari e inserito cataloghi nuovi. Tutto questo per tentare di ottenere misure sensate da un punto di vista scientifico.

Nelle appendici di questo manuale, sono riportati vari casi che ci sono capitati e che una volta studiati, capiti e risolti si spera ci permettano di uniformare per quanto possibile il nostro metodo che deve essere un metodo comune e scientifico.

Tra le varie problematiche incontrate vi è quella del filtraggio delle stelle di tipo solare. Quando carichiamo l'immagine delle stelle e chiediamo al sw di trovare tramite catalogo le stelle di tipo solare ci sono alcuni parametri che definiscono la magnitudine e la precisione spettrale delle stelle, magnitudine minima e massima e il B-V delle stelle di tipo solare da trovare (Err max: in pratica un filtro).

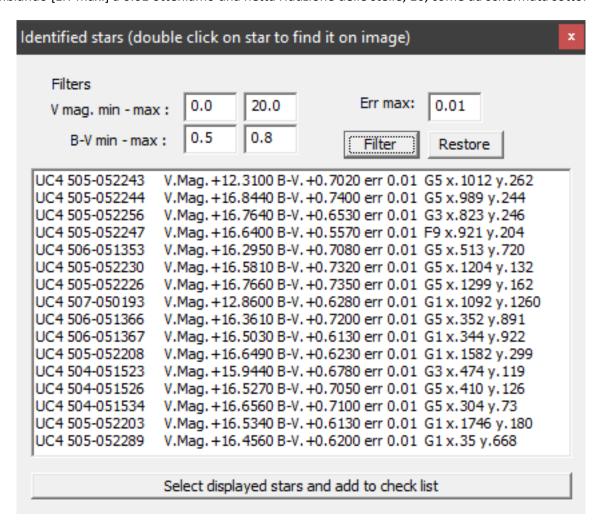


I parametri sono tutti importanti, ma quest'ultimo (Err max) richiede attenzione. Tenendo fisso il valore di B-V che ci propone il sw e utilizzando tutte le stelle che trova, la misura Afrho sarà di un valore X, se aumentiamo la precisione "la misura cambia".

Ma quanto cambia?, cambia anche considerevolmente e la differenza fra le due può arrivare a superare la soglia del 10-20% che consideriamo accettabile dalle nostre misure.

Riprendiamo un caso particolare, mi riferisco alle immagini acquisite da Rolando Ligustri in remoto della cometa interstellare 2I/Borisov. Già la misura è stata problematica, poi è stato complicato stabilire quale fosse il valore più probabile.

Anche se le due misure differiscono per il valore del bg di un solo ADU esse risultano coerenti. Utilizzando i dati che ci propone il sw otteniamo un certo numero di stelle come dalla schermata sotto.



Con i valori standard il sw ha trovato 55 stelle e i grafici Afrho risultano:

Il valore medio trovato si assesta su circa 44.

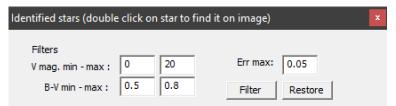
Cambiando [Err max:] a 0.01 otteniamo una netta riduzione delle stelle, 16, come da schermata sotto.

Tecnicamente abbiamo ridotto l'errore della classe spettrale e ci aspettiamo un miglioramento della nostra misura. Vedi i grafici sotto.

Il valore medio trovato si assesta su circa 28.

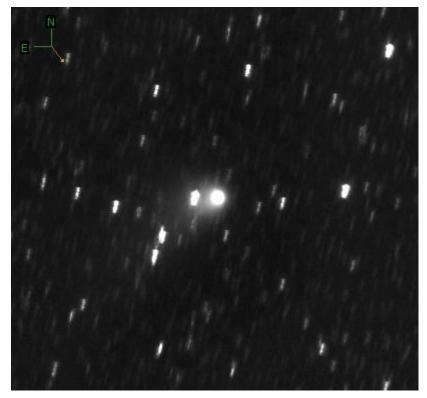
A parte la pendenza dei grafici dovuta alla differenza di bg, 283 contro 284, i valori **44** e **28** sono due numeri non troppo simili, c'è una differenza del **36%!**, ben oltre i limiti del **10-20%** che ci siamo fissati, e che risultano da una analisi fatta sul totale delle misure Afrho presenti nel Database del CARA.

Analizziamo immagini della 2I/Borisov ottenute all'Oss. Di Cavezzo il 27/10/2019, cambiando il B-V e i valori del filtro (0,05-0,01) come da immagini sotto si può ragionevolmente prendere atto che se il rapporto segnale rumore è buono le differenze rientrano in quel 20% che riteniamo accettabile.

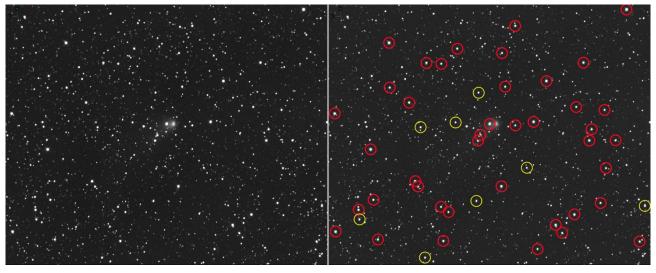

RACCOMANDAZIONE FINALE:

Cerchiamo di ottenere immagini con il più alto possibile rapporto "**segnale rumore**", e verifichiamo a priori il comportamento del nostro **CCD e del pretrattamento fatto**.

Metodo di misurazione: il filtro delle magnitudini.


Nell'appendice precedente abbiamo visto come modificare e affinare la nostra misura utilizzando e variando il **B-V** e il valore della voce **[Filter]**. Nonostante l'affinamento dei parametri può succedere che la nostra misura si discosti di molto (anche fino al 50%) da quelle che altri hanno rilevato, come mai?.

Un altro parametro importante che WinAfrho ci mette a disposizione è la possibilità di restringere la magnitudine delle stelle di tipo solare da utilizzare. Il ragionamento fatto da WinAfrho è semplice, perché usare la magnitudine di tutte le stelle nel campo di ripresa ove potrei avere stelle sature o troppo deboli e che mi porterebbero a una dispersione tale da inficiare la mia misura?. Anche nella fotometria classica si prediligono stelle con un buon s/n e una magnitudine compatibile con l'oggetto da fotometrizzare.


La finestra di definizione dei parametri menzionati.

Vediamo il caso capitato all'osservatorio di Cavezzo sulla cometa C/2017 T2-PanSTARRS del 15 febbraio 2020. Nella prima misura Afrho abbiamo ottenuto dei valori che erano palesemente sottostimati, da un valore ormai certo di circa 2000 cm ±10% a un valore da noi ottenuto di 1598 cm ±10%. Se analizziamo i numeri ricordando che accettiamo un errore del ±10% vediamo come il minimo inferiore di 2000 è 1800 e il limite superiore di 1598 è di 1750. Ora 1800 e 1750 non sono molto distanti, ma introducono un range di errore molto grande e inaccettabile. Tutto questo a cosa ci porta?, intanto vediamo le immagini della cometa e delle stelle.

Questa a lato è la – sigma - della cometa C/2017 T2, purtroppo il moto proprio lento ha fatto si che nonostante due ore di esposizione equivalente la sigma non sia riuscita a "pulire" bene l'immagine dalla strisciata delle stelle. E' certo che la misura andrà effettuata con attenzione per via della contaminazione stellare.

A **sinistra** l'immagine delle stelle (tante) dove si potrebbe ipotizzare di trovarne di buone per il confronto. In realtà, come vediamo dall'immagine di **destra** la situazione è più complessa. Troviamo infatti molte stelle

cerchiate di rosso e che nel nostro sistema di ripresa corrispondono a stelle il cui valori di ADU e superiore a 60000, *inutilizzabili a fini fotometrici*.

Immagine con riportati i risultati della sessione dove abbiamo lasciato inalterati i valori [V mag. min – max] a 0 e 20.

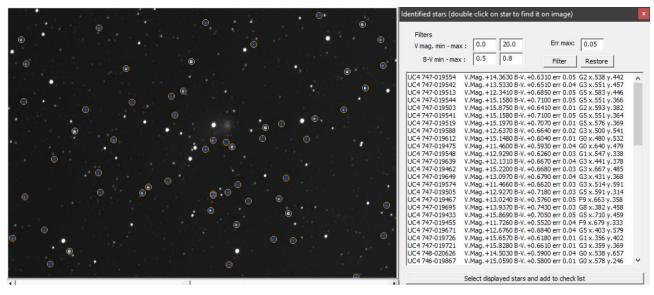
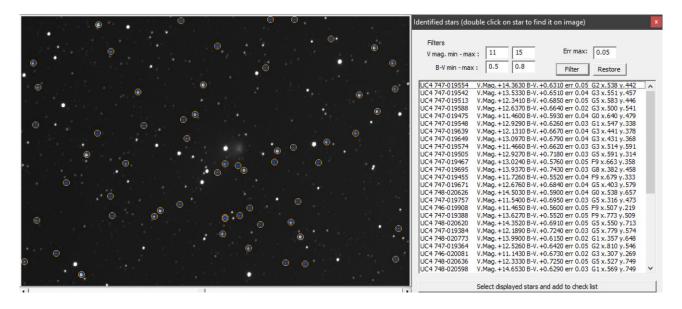



Immagine con riportati i risultati della sessione dove i valori [V mag. min – max] sono stai portati a 11 e 15.

Sotto il grafico e la relativa misura Afrho riferita alle due condizioni di selezione.

Possiamo fare alcune considerazioni dall'esempio di cui sopra, nel caso di dubbi o incertezze è meglio confrontarsi con altri in lista. Anche quando è una prima misura in assoluto il mandare ad altri le proprie immagini ci permette un confronto e controllo sul nostro operato.

Misurare comete luminose e molto luminose.

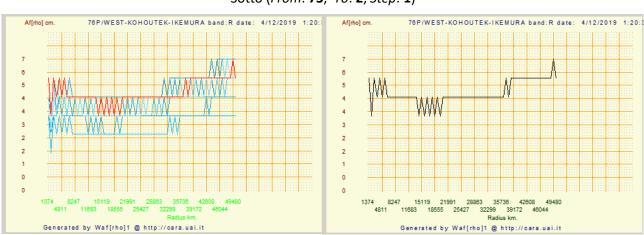
La luminosità delle comete da misurare la possiamo grossolanamente suddividere in tre macro categorie,

- 1) Deboli e poso luminose, (Tipo: 2I/Borisov) casi al limite della misura, fatte con Rc e senza filtro.
- 2) Mediamente luminose, (Tipo: C/2012 R1-Lovejoy) stanno comodamente nel campo del CCD, e sono facili da misurare, con filtro Rc.
- 3) Luminose e veloci, (Tipo: C/2014 Q2-Lovejoy) che riempiono il campo del CCD e che richiedono una accurata scelta del bg, visto che viene contaminato dalla chioma.

Ecco le tre comete in oggetto che NON sono esaustive della variabilità delle forme cometarie.


Misurare un oggetto piccolo ha le sue problematiche, ma anche oggetti estesi non sono da meno. Hanno si una dinamica maggiore e di conseguenza un s/n migliore, ma a volte sono talmente grandi da riempire il nostro campo. Questo introduce un problema, dove misuro il bg se è contaminato dalla chioma?. Una risposta potrebbe essere quella di ridurre la focale, oppure acquisire immagini in un campo adiacente con le stesse caratteristiche di ripresa, e li misurare il bg.

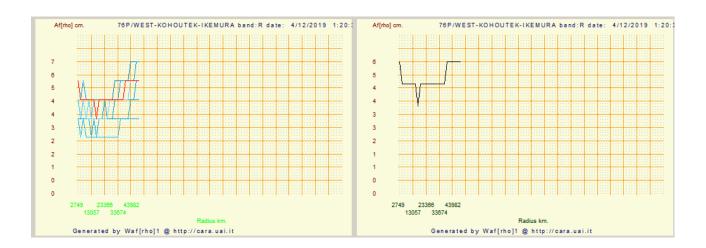
Per completezza vedere le due appendici:


- AFRHO con stelle di riferimento esterne al campo inquadrato.
- Misurare Afrho su una singola stella.

Tutte le comete sono misurabili?.

In tanti anni di attività è successo che oltre a non trovare stelle di tipo solare nel nostro campo non riuscissimo a misurare la nostra cometa. La dimensione dell'oggetto era tale che nonostante ci fossero tutti i requisiti la misura non sia stata portata a termine, i grafici ottenuti sono praticamente inutilizzabili. Ovviamente se di questo oggetto avessimo solo ed esclusivamente questa misura potremmo anche tenerla, altrimenti è meglio lasciare perdere. Ne è un esempio il caso della cometa 76P-West-Kohoutek-Ikemura del 4-12-2019.

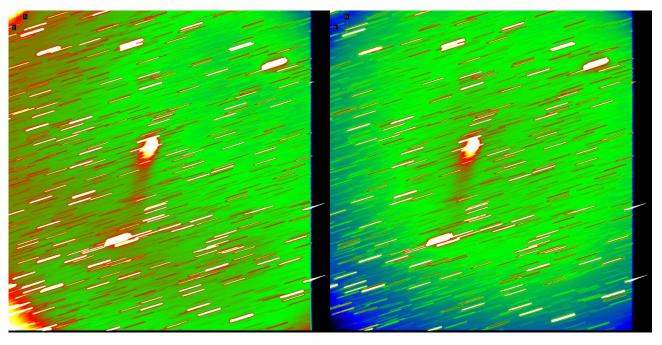
Le immagini sono la media e la sigma di ben 110 frame e nonostante un buon s/n (rapporto segnale rumore) i grafici che seguono nonostante tutti tentativi non hanno portato a risultati validi. In [Select windows size in pixel (odd number)] i parametri di From, To e Step sono stati variati per le prove, From è rimasto impostato a 73, mentre To è variato da 2 a 3 a 4 e Step da 1 a 2 a 3. Oltre non aveva più senso. Vediamo i grafici riportando sia il multiplot che il singolo plot che isola la singola misura e dove si può più facilmente apprezzare il grafico.



Sotto (From: **73**, To: **2**, Step: **1**)

Sotto (From: 73, To: 3, Step: 2)

Sotto (From: 73, To: 4, Step: 3)

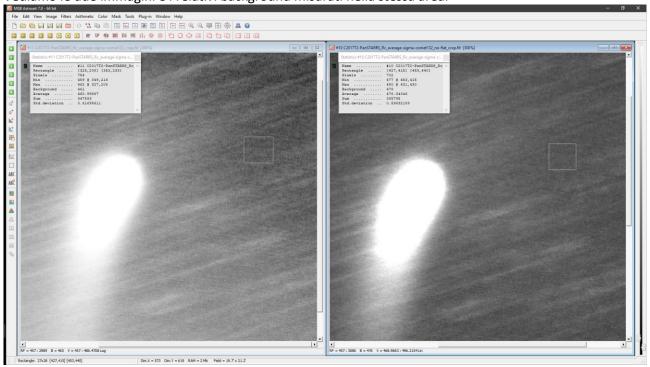


Meglio misurare con Flat o senza Flat?.

Come già accennato in altre appendici la misura Afrho è fortemente influenzata dalla qualità della ripresa e dal pretrattamento. Si è anche detto che è meglio misurare – senza flat – piuttosto che utilizzarne uno fatto male.

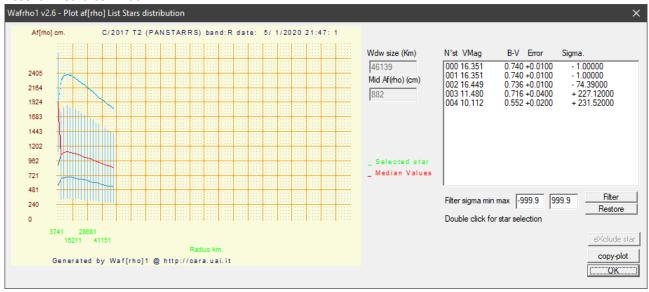
L'esempio viene dalla notte di osservazione del 5/1/2020 presso l'osservatorio di San Marcello, dove è stata ripresa la cometa C/2017 T2-PanSTARRS. La sessione si è svolta con l'utilizzo del filtro fotometrico Rc e la realizzazione del relativo Flat. In cielo dominava una Luna illuminata al 72.62% che potrebbe aver illuminato anche l'interno del tubo del telescopio sia per la realizzazione del Flat che durante la ripresa della cometa che distava 51° dalla Luna.

Il risultato del pretrattamento non è stato all'altezza delle nostre aspettative.

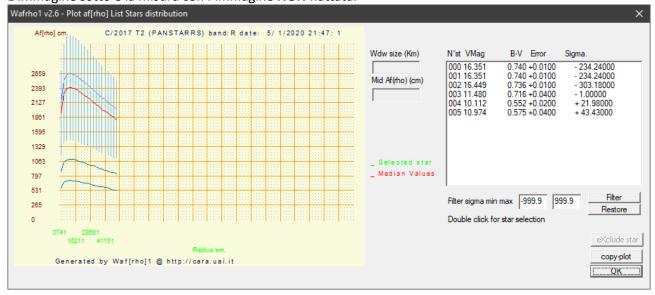


(a) Immagine corretta da un Flat sbagliato (b) Immagine priva di Flat

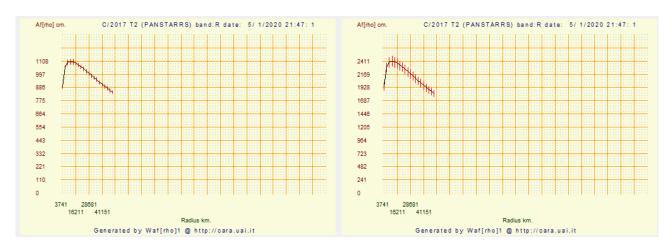
Il confronto fra le due immagini mette bene in evidenza la disuniformità di campo. Mentre nell'immagine (a) abbiamo un campo disuniforme e non corretto (bordi e zona centrale) nell'immagine (b) abbiamo solo una caduta di luce ai bordi e un leggero disassamento dell'asse ottico rispetto al CCD.


La differenza la fanno i numeri che escono da queste due immagini. L'Afrho conseguente rivela come l'immagine "flattata" ritorni numeri e grafici completamente senza senso.

Vediamo le due immagini e i relativi background misurati nella stessa area.


Nell'immagine a sinistra abbiamo misurato un bg di 461, mentre in quella di destra 478. Apparentemente si potrebbe ipotizzare che una differenza di 17 ADU non sia poi così alta. In realtà, insieme alla non uniformità la misura relativa porterà a risultati sbagliati.

Ecco la misura con Flat.


Winafrho ha trovato nel campo 5 stelle. Ricordiamo che anche l'immagine di confronto delle stelle è stata ottenuta utilizzando il Flat. Il grafico mostra un andamento stranissimo e anche scegliendo come stella di riferimento la prima il singolo plot riporta valori ben distanti dalla misura ottenuta da altri.

L'immagine sotto è la misura con l'immagine NON flattata.

In questo caso Winafrho ha trovato nel campo (**non flattato**) 6 stelle. Scegliendo come stella di riferimento la quarta dall'alto (sigma 1) il singolo plot riporta valori coerenti con le misure degli altri osservatori.

Vediamo il confronto dei singoli grafici e relativa misura Afrho.

La curva ha lo stesso andamento, ma le misure sono completamente differenti, **1108** contro **2411**, un errore maggiore del **55%**.

Effemeridi dall'MPC e Formule Utili

Le comete sono oggetti che variano tantissimo la loro velocità, se vogliamo tenere il nucleo puntiforme dobbiamo risalire al suo moto e di conseguenza adottare un tempo di esposizione tale da congelarne il movimento all'interno del nostro pixel. I dati della velocità li troviamo sul sito dell'MPC all'indirizzo:

https://www.minorplanetcenter.net/iau/MPEph/MPEph.html

Qua inserendo alcuni dati otteniamo l'effemeride della nostra cometa.

- Le voci più importanti sono l'inserimento del nome della cometa es: [C/2017 T2] (Objects may be identified by designation or by name. Enter a list of designations or names below (one entry per line, excess entries will be ignored))
- La data nel formato es: [2020-03-04] (Ephemeris start date)
- L'intervallo delle effemeridi in giorni, ore o minuti. (Ephemeris interval:) – (Ephemeris units: days, hours, minutes)
- Il codice dell'osservatorio MPC es: **[107]**, se non esiste possiamo inserire Latitudine e Longitudine. (<u>Observatory code</u>:) (Longitude E/W) (latitude °) (altitude m)
- La velocità espressa in gradi sec, min, ore e giorno, usiamo i ["/min] . Display motions as: "/sec, "/min, "/hr, °/day

Le altre voci possono rimanere invariate. A questo punto premiamo sul pulsante

Get ephemerides/HTML page e otteniamo le effemeridi con i valori di moto che a noi interessano.

```
C/2017 T2 (PANSTARRS)
Perturbed ephemeris below is based on elements from MPC 119996.
     CK17T020
                         R.A. (J2000) Decl.
                                                                                                          Sky Motion
"/min P
Date
                                                                              El.
                                                                                        Ph.
                                                                                                m1
                                                                                                                                                                  Dist. Alt.
054 +18
059 +28
                h m s
                                                                                                                       P.A
                                                                                                                                  Azi. Alt.
161 +21
                                                                                                                                                 Alt.
                                                                                                                                                         Phase Dist.
2020 03 04 000000 02 11 14.5 +61 52 57 2020 03 05 000000 02 12 03.9 +62 04 20 2020 03 06 000000 02 12 56.8 +62 16 00
                                                                                                                                                 -51
-51
                                                                                                                                                         0.62
                                                                    1.810
                                                                                                          0.54
```

In questa tabella vengono riportati diversi dati, ma quello che a noi interessa è riferito alla velocità che troviamo nella colonna alla voce: [Sky Motion – "/min], anche il [P.A] potrebbe tornarci utile.

Fatta questa premessa dobbiamo calcolarci quale sia l'esposizione massima perché il nucleo rimanga confinato nel nostro singolo pixel. E' fondamentale conoscere la scala immagine in secondi d'arco/pixel della combinazione telescopio-CCD che è data da:

scala=
$$(206,265 / f) \times pix$$
 o scala= $(pix / f) \times 206,265$

dove - pix - è la dimensione in micron di un pixel e - f - la lunghezza focale in millimetri.

Ad esempio con una focale di **2210 mm** e un pixel da **6 micron** avremo una scala immagine di **0,55 secondi** d'arco/pixel.

Calcoliamo il massimo tempo di posa utile perché la cometa non risulti mossa guidando sulle stelle. Durante l'esposizione la cometa dovrà al massimo spostarsi entro un pixel.

Nel nostro esempio con scala di **0,55 arc-sec/pix**el se ipotizziamo che la cometa abbia un moto proprio di 116

0,52"/minuto (abbiamo preso il primo valore dalla tabella delle effemeridi) allora la posa massima consentita sarà di:

Posa max = 60 * (scala immagine) / (moto proprio)

Ovvero

(60 * 0,55) / 0,52 = 63 secondi.

Questo è un caso ideale che presuppone condizioni di cielo perfette (*seeing* ottimo). Operando sotto cieli non particolarmente buoni, potremmo anche scegliere di operare in binning 2x2, 3x3 o 4x4 (se il nostro CCD ce lo consente) con una scala immagine che passa da:

arc-sec/pixel 0,55 (bin 1x1, pixel 6 μ) exp 63s arc-sec/pixel 1,1 (bin 2x2, pixel 12 μ) exp 126s arc-sec/pixel 1,68 (bin 3x3, pixel 18 μ) exp 189s arc-sec/pixel 2.24 (bin 4x4, pixel 24 μ) exp 252s

potendo così raddoppiare/triplicare e quadruplicare il tempo di posa. Come detto sono tempi di sicurezza e ideali, poi ognuno di noi si scontra con il seeing medio del proprio sito osservativo. Stando attenti a non saturare le stelle di confronto l'uso del binning è particolarmente utile in presenza di comete deboli.

Se invece usiamo **GUIDE** che usa il formato: (Motion is **-0.62** degrees/day in RA, **-0.48** degrees/day in dec), prendiamo il valore maggiore fra i due, nell'esempio **0.62**, lo moltiplichiamo per **3600** e il risultato lo dividiamo per **86164** che sono i minuti di un giorno siderale, prendiamo i nostri arc-sec/pixel (es. **1.68**) e li dividiamo per il risultato dell'operazione precedente.

Ricapitolando:

0.62 x 3600 = 2232

2232 / 86164 = 0.025904089

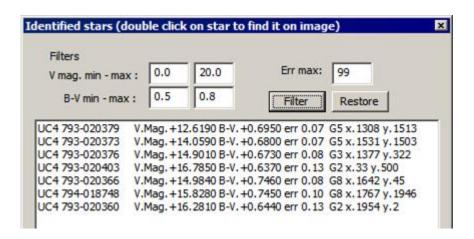
1.68 / 0.025904089 = 64.8 sec \leftarrow [tempo massimo di esposizione].

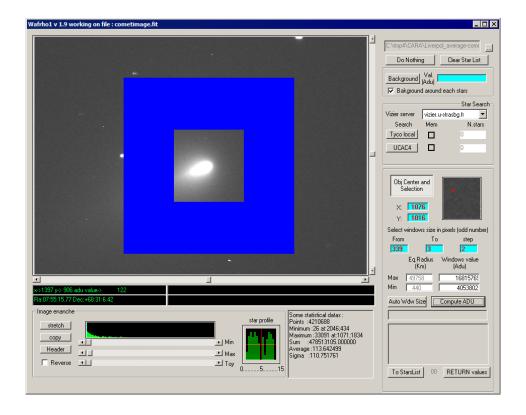
Se invece vogliamo sapere a cosa corrisponde un pixel in kilometri alla distanza della cometa dobbiamo moltiplicare la distanza della cometa (es. **500000** Km) per i nostri arco-secondi (es. **1.68**) e poi dividere per **206265**.

Esempio: (500000 * 1.68) / 206265 = 4.07 Km/pixel

Oppure possiamo utilizzare questa formula che prevede di sapere la lunghezza focale (es. **2210mm**) e la dimensione in micron (es. 6μ - bin 1x1) dei pixel. Dividiamo la distanza della cometa (es. **500000** Km) per la lunghezza focale (es. **2210mm**) e moltiplichiamo per i nostri micron (es. 6μ) e dividiamo per **1000** per avere i Kilometri.

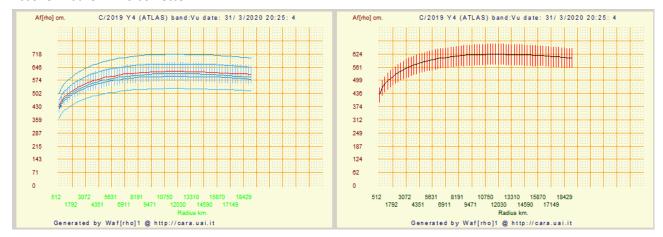
Esempio: (500000 / 2210) * 6 / 1000 = 1.36 Km/pixel.


Esempio: (500000 / 2210) * 18 / 1000 = 4.07 Km/pixel, \rightarrow In bin 3x3, pixel di 18 μ troviamo lo stesso valore della prima formula.


Misurare immagini ad alta risoluzione (telescopio da 2 metri)

Recentemente abbiamo avuto la possibilità di misurare l'Afrho su delle immagini che provenienti dal telescopio Liverpol situato alle Canarie della cometa C/2019 Y4. E' un telescopio della classe dei 2 metri. Fatte le misure mi sono accorto che c'era qualcosa che non andava. Le misure mie confrontate con quelle fatte da Roberto Trabatti hanno messo in luce uno strano comportamento di Winafrho.

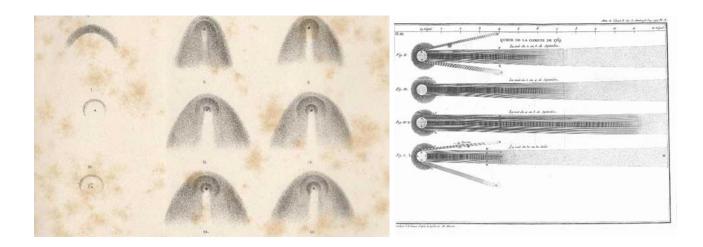
Nel campo vi erano poche stelle di confronto e si è aumentato l'errore alla voce [Err max:] dove di default il valore è di 0.05. E' stato sufficiente portare il valore da 0.05 a 99 e immediatamente senza scomodare i settaggi di [B-V min – max (0.5 – 0.8)] e il [V mag. min-max (0.0 – 20.0)], sono apparse più stelle.


Caricata l'immagine della cometa Winafrho ha messo in automatico per una finestra di 50000 km lineari dei quadrati di lettura fotometrica nella finestra di [Select windows size in pixel (odd number)] – From: 339, To: 3, Step: 2. Valori che hanno senso, però siccome Winafrho inserisce queste finestre fotometriche clikkando su [Comupte ADU] a partire dalla più esterna a venire verso il centro il risultato è stato questo: non ha significato alcuno.

Come possiamo vedere l'area di lettura **NON** arriva al centro della cometa e c'è un motivo. Il problema risiede nel fatto che le finestre sono esterne e il programma fa al **massimo 100 finestre**. Quindi se si usano i 339 pixel di raggio con step 2 non arriviamo al nucleo, **100*2** fa **200**. Quindi per arrivare al nucleo **max 200** pixel di raggio bisogna usare **150** e **2** di step.

Ecco le misure Afrho corrette.

Come riconoscere immagini FITS a 16 o 32 bit.

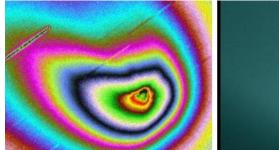

Si è scritto che Winafrho legge solo immagini a 16 bit interi, ma come facciamo a saperlo. Normalmente tutte le nostre immagini CCD sono a 16Bit, ma a volte capita che come in Astroart se anche solo un pixel ha un valore superiore allora Astroart adatta la dinamica del file al valori superiore per evitare di perdere informazione. Un tipico caso è durante il pretrattameto, se dalle operazioni di sottrazione del Dark un pixel casuale risulta inferiore a 0 o superiore a 65535 Astroart come detto adatta la dinamica. L'immagine risultante non verrebbe letta da Winafrho. Si può ovviare con una macro che azzeri i pixel negativi e tagli quelli superiori mettendoli a valore 65535.

L'intestazione di un file a 16 bit è quella riportata sotto in colore rosso.

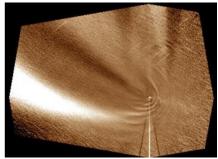
8 Bit		16 Bit		32 Bit			32 Bit color	
(256 livelli)		(65535 livelli)		(4294967296 livelli)		(4294967296 x 3 livelli)		
SIMPLE =	T	SIMPLE =	T	SIMPLE	=	Т	SIMPLE =	Т
BITPIX =	8	BITPIX =	16	BITPIX	=	-32	BITPIX =	-32
NAXIS =	2	NAXIS =	2	NAXIS	=	2	NAXIS =	3
NAXIS1 =	320	NAXIS1 =	320	NAXIS1	=	320	NAXIS1 =	320
NAXIS2 =	240	NAXIS2 =	240	NAXIS2	=	240	NAXIS2 =	240
AVISUMIN=	0.0	BZERO =	32768.0	AVISUMI	N=	0.0	NAXIS3 =	3
AVISUMAX=	255.0	BSCALE =	1.0	AVISUMA	=X	65535.0	AVISUMIN=	0.0
AVISUTYP=	0.0	AVISUMIN=	0.0	AVISUTY	P=	0.0	AVISUMAX=	65535.0
END		AVISUMAX=	65535.0	END			AVISUTYP=	0.0
		AVISUTYP=	0.0				END	
		END						

I filtri per l'elaborazione della chioma (RW, MCM e LS).

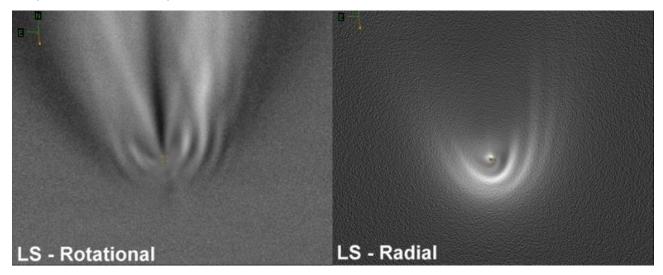
Quando si parla di comete l'interpretazione dei risultati delle elaborazioni è quanto mai problematica. Storicamente abbiamo i disegni che documentavano la morfologia e l'evoluzione di molte comete ma l'interpretazione e la resa dei dettagli era molto soggettiva, pur essendoci osservatori che, con grande abilità pittorica e acuità visiva, riuscivano a dare una rappresentazione che possiamo considerare abbastanza oggettiva.

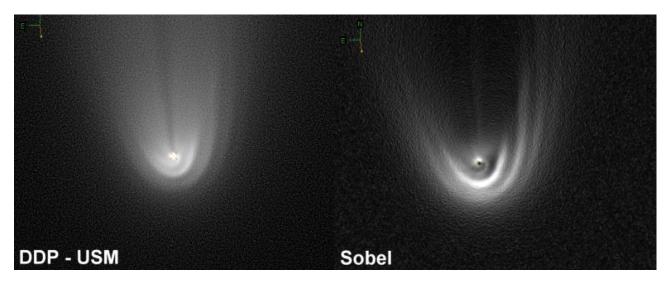

In seguito la fotografia ha permesso un approccio più scientifico ma con difficoltà di analisi dovute alla non linearità di risposta delle pellicole e per la complessità delle elaborazioni in camera oscura.

Oltre alla normale fotografia a lunga esposizione negli anni 70 e 80 si è affiancata una fotografia più scientifica, grazie all'introduzione di una pellicola speciale per arti grafiche. Per anni è stata l'unica possibilità di ottenere un qualche tipo di informazione scientifica, mi riferisco alla famosa – **Agfacontur** – che permetteva di "generare" profili di intensità, **isofote**.



Con l'avvento digitale è stato possibile manipolare con gran facilità i numeri che compongono l'immagine e conseguentemente si è aperta l'opportunità di provare vari filtri per l'elaborazione. L'intento è quello di estrarre la maggiore quantità di informazione possibile (*Morfologia della chioma*).





NOTA: Le immagini sono fatte di numeri e il primo comandamento quando si usano i filtri implementati nei vari software di elaborazione è di "non inventare quello che non esiste". Potrebbe sembrare una affermazione – strana -, purtroppo non è così, l'uso improprio di uno di essi può condurre a **immagini non veritiere** e l'accoppiata con un altri software di fotoritocco; **artefatti pittorici**. Queste immagini immancabilmente compaiono in rete quando si hanno grandi comete e/o luminose dove tutti si inventano Fotoelaboratori e Fotoritoccatori.

L'algoritmo più noto è sicuramente il Larson-Sekanina (*Descritto per la prima volta in un articolo dell'Astronomical Journal del 1984 degli astronomi Steven M. Larson del Lunar and Planetary Laboratory in Arizona e Zdenek Sekanina del Jet Propulsion Laboratory in California*) che ha due componenti di utilizzo, quella usata più frequentemente è la **ROTAZIONALE**, e meno la **RADIALE**. Derivano da tecniche fotografiche e reso assai più versatile ed efficace nell'approccio digitale. Tuttora è implementato in vari software. Fu presto evidente come fosse facile produrre risultati che andavano presi con cautela, e per un certo periodo se ne è anche abusato, nel senso che derivando l'informazione è possibile "inventare" dettagli inesistenti, inoltre è un tipo di filtraggio che richiede una certa sensibilità nell'uso, e molta esperienza personale. Nel complesso si può definire poco scientifico essendo il risultato fortemente dipendente dai parametri fissati, inoltre, pur evidenziando variazioni nel gradiente delle chiome cometarie, distrugge l'informazione originale. E' utilizzato assai di rado in ambito professionale. Se usato il risultato va confrontato con altri filtri che possano confermare quello evidenziato.

Ne vediamo un esempio sopra, a sinistra la componente Rotazionale e a destra quella Radiale. Già dalla immagine di destra è possibile notare come certi dettagli della componente Rotazionale **NON ESISTONO**. Un'ulteriore conferma la danno le due immagini seguenti trattate con filtri completamente differenti.

A sinistra l'applicazione di una USM (maschera sfocata) dopo aver trattato l'immagine con un DDP (Digital Development Process). A destra un filtro convolutivo che riconosce i bordi.

In ambito CARA da molti anni si sono preferiti due approcci diversi che rispettano maggiormente le esigenze di un approccio più scientifico, sono meno manipolabili e preservano l'informazione originale. I filtri in questione sono rispettivamente il modello matematico della chioma (MCM – Median Coma Model) che consiste nel definire un optocentro e da li allargandosi concentricamente leggendo i valori che vanno mediati si genera un modello con il nuovo valore che va poi sottratto e/o diviso all'immagine di partenza.

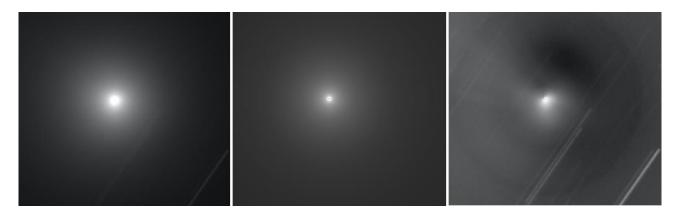
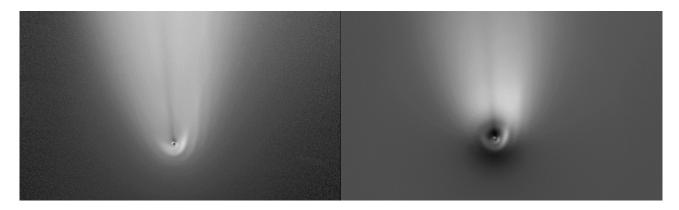
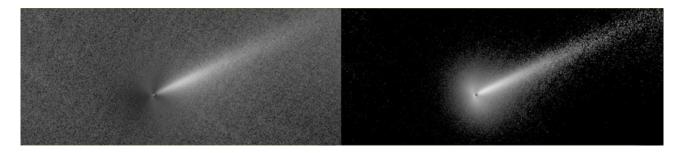


Immagine sopra (C/2014 Q2), a destra l'immagine originale, al centro il modello matematico e a destra il risultato della sottrazione. In questi casi l'interpretazione è problematica, nel senso che alla fine cosa vediamo?. Il filtro lavora bene quando la chioma è distribuita in maniera uniformemente circolare (come esempio sopra), mentre quando si hanno chiome asimmetriche il risultato va valutato con molta attenzione. Le differenze di contrasto sono tali da non averne una buona visualizzazione.



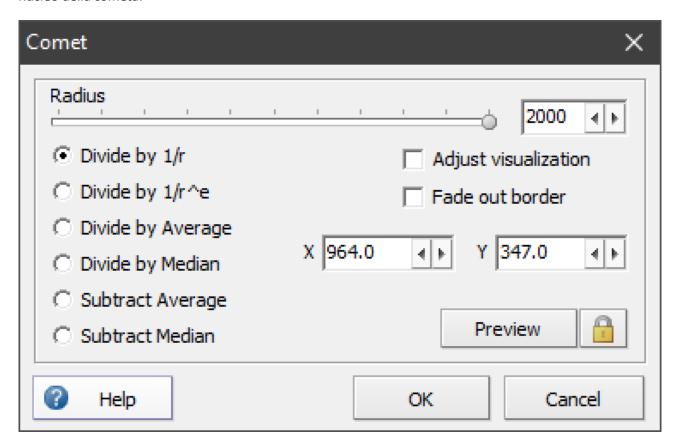
Sopra a sinistra l'originale e a destra la sottrazione del modello matematico (MCM). Notiamo come la non simmetricità riveli come sopra vi sia una "struttura rotonda scura" che è dovuta alla sottrazione, ovvio che è un artefatto.

Il secondo è il filtro 1/ρ (**RW - (Radial Weigthed)**), che regola i valori di ciascun pixel in base alla sua distanza dall' optocentro. L'idea è che i valori più vicini all'optocentro sono più luminosi di quelli più lontani. Moltiplicando ogni valore per la sua distanza si compensa la diminuzione radiale della luminosità che si assume inversamente proporzionale alla distanza dal centro. Questo filtro è preferibile con comete che emettono polvere. Poco indicato per emissioni di gas. Analogamente al precedente evidenzia le asimmetrie nella chioma.

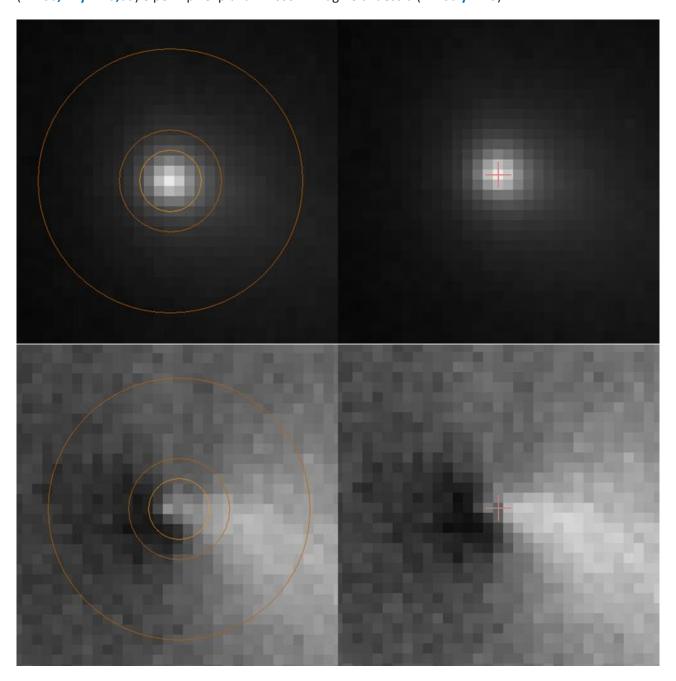

A sinistra l'originale e a destra l'applicazione del filtro RW.

I due filtri a confronto su una cometa particolarmente luminosa. A sinistra l'RW a destra l'MCM.

Come accennato non sempre le comete sono così luminose da poter usare ed evidenziare "strutture" come le immagini sopra, il più delle volte vengono usati su comete più normali. Se le comete sono deboli, l'MCM

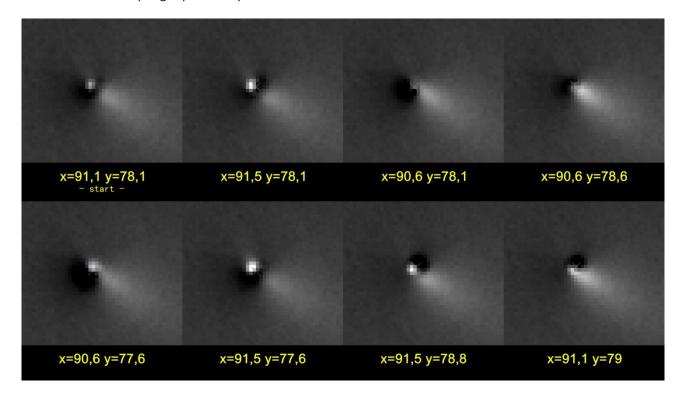

non restituisce una elaborazione significativa e lo stesso dicasi per l'RW. Sta nella sensibilità stabilire se usarli oppure no.

Sopra immagine della C/2017 E4, a destra l'applicazione dell'MCM e sinistra l'RW.


I risultati di questi processi di elaborazione erano sempre stati dati per affidabili, e in letteratura non si è mai trovato nulla che mettesse in discussione i risultati, anzi si tratta di filtri ampiamente utilizzati anche in ambito professionale. E' stata una vera sorpresa scoprire che l'interpretazione dei risultati in realtà non è così ovvia come si pensava.

Dalla versione 7 di Astroart i filtri MCM e RW sono implementati direttamente nel software con alcune aggiunte, per esempio poter vedere in tempo reale come spostando o le coordinate del pixel più luminoso o l'optocentro a frazioni di pixel cambiano le visualizzazioni dei suddetti filtri. L'uso dello spostamento a frazioni di pixel ha messo in evidenza come le "strutture" cambiavano morfologia. Il significato è presto detto; non essere più sicuri dell'interpretazione, già difficile e resa ancora più delicata e problematica del previsto, soprattutto se si utilizzano le immagini ad esempio per collegare la morfologia alla rotazione del nucleo della cometa.

D'ora in poi bisognerà ragionare con grande attenzione su quale centro di riferimento assumere come "nucleo" della cometa: se usare l'optocentro (baricentro fotometrico) o il pixel più luminoso.


Sotto un esempio concreto di quanto accennato. Le coordinate sono per l'optocentro immagine di sinistra (x=180,14 y=175,03) e per il pixel più luminoso immagine di destra (x=180 y=175).

Anche se di poco le variazioni di morfologia ci sono e, quando cerchiamo il "dettaglio" il problema dell'interpretazione richiede un certo grado di attenzione. A questo punto stabilire quale delle due immagini riflette entro certi limiti strumentali la "vera" morfologia della zona nucleare è complicato.

Una ulteriore implementazione e la possibilità di definire l'elevazione a potenza del filtro RW $(1/\rho^x)$, ossia l'elevazione a potenza (x), tale da trovare il profilo ottimale che descrive al meglio l'andamento medio della chioma, che si ricorda essere una cuspide, diversamente da una stella che è una gaussiana.

Vediamo con un riepilogo quanto sopra accennato.

L'immagine sopra mette bene in evidenza come spostandosi di frazioni di pixel in (X) e (Y) l'informazione cambi. Tale cambiamento se volessimo fare della morfologia sarebbe alquanto problematico. Quale di queste "strutture" è quella che più si avvicina alla realtà.

Possiamo concludere suggerendo due comportamenti per fare della morfologia:

- Immagini: buon pretrattamento (dark e flat) e un buon rapporto segnale rumore.
- **Risoluzione:** per singolo pixel adeguata (*km per pixel*).
- Risultati: verificare quello che «vediamo» con altri filtri.
- Coordinate di partenza: specificare se abbiamo usato l'optocentro o il pixel più luminoso.

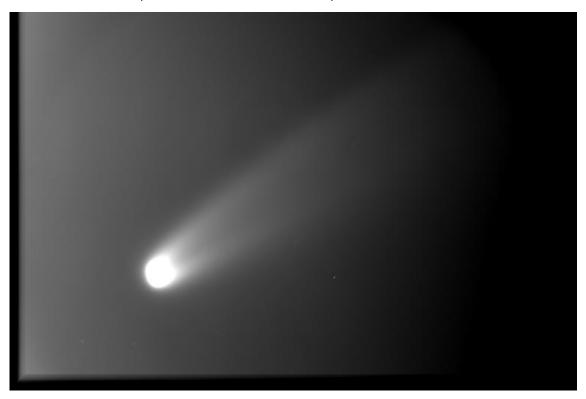
Considerazioni di: Giannantonio Milani, responsabile sezione comete UAI.

I "getti", quelli veri (vedi 67P), li vedono solo le sonde nell'esplorazione diretta e sono su piccola scala. Ciò che noi vediamo con le nostre risoluzioni può essere per vari motivi al più una emissione "globale" collimata.

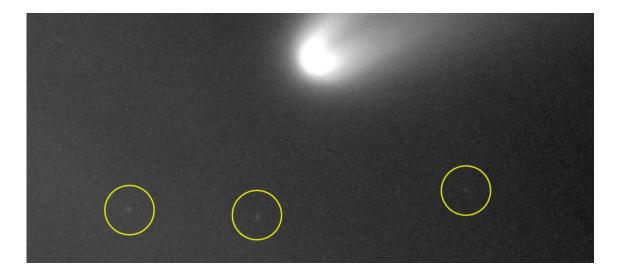
I risultati del Larson-Sekanina variano a seconda dei parametri usati e interpretare ciò che si vede come strutture reali è molto pericoloso. I professionisti ben se guardano dall'utilizzarlo. Si creano molti artefatti e ciò che si mette in evidenza è una variazione di gradiente, interpretarla correttamente è difficile o impossibile.

Da una singola immagine è generalmente impossibile fare considerazioni sulla rotazione. I professionisti (seri) che fanno queste cose utilizzano numerose immagini distribuite su molte date e larghi intervalli temporali. Elaborano in molti modi (come scritto sopra) per confermare la realtà di ciò che vedono, e verificano se vi siano strutture che si ripetono ad intervalli regolari.

Non puoi avere la certezza assoluta che quello che trovi sia la rotazione, ci puoi solo sperare. La variabilità nell'attività di una cometa può generare strutture apparentemente periodiche ma che sono in realtà casuali. Poi non dimentichiamo che la prospettiva sotto la quale vediamo la cometa varia nel tempo.


Quelle cose incurvate su larga scala chiamate comunemente "getti" il più delle volte sono in relazione all'accelerazione impressa alle polveri dalla pressione di radiazione. Polveri emesse in direzione solare dal lato illuminato del nucleo. L'evoluzione della chioma interna è un caos. Interpretazione molto difficoltosa.

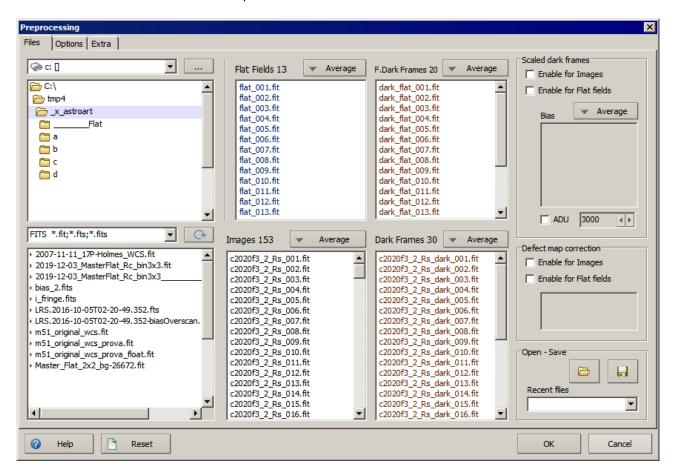
A conclusione vorrei riportare quanto scritto da *Marco Fulle* dell'INAF di Trieste a proposito dei "getti" che compaiono nelle elaborazioni.


NON si possono determinare "spots" attive sul nucleo da osservazioni "terrestri", perché se non si sa PRIMA come è fatto il nucleo, non si può sapere il moto del gas e della polvere nella chioma interna (entro 100 raggi nucleari). Se non si sa tale moto, è impossibile risalire DAI vari "jets" and "haloes" alle presunte spots sul nucleo, tanto meno alla loro area.

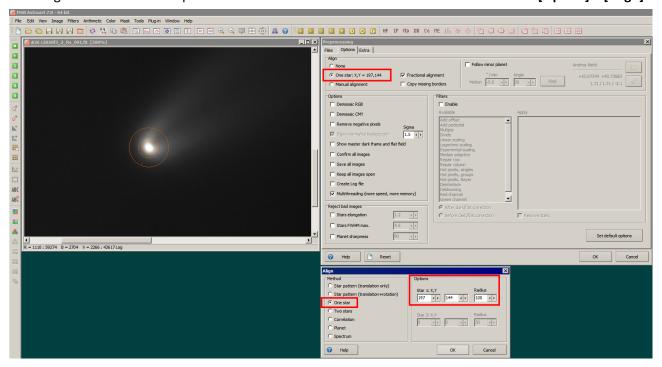
Allineare immagini cometarie con stelle quasi invisibili.

La recente cometa C/2020 F3 (NEOWISE) passando vicina al Sole ci ha messo di fronte a una problematica che non accade spesso, la velocità della cometa era tale che per tenere il nucleo fermo sulle immagini le esposizioni erano brevissime, dell'ordine di 1 o 2 secondi. Se poi ci mettiamo che per la misura Afrho si usano i filtri **R** (arancione) o il **647nm** (rosso scuro) si capisce come oltre alla cometa le stelle siano praticamente invisibili o al massimo appena visibili se non superano una certa magnitudine. Il problema è come allineare queste immagini per ottenerne una con la cometa e una con le sole stelle, che è quella che verrà utilizzata da Winafrho per fare la fotometria. Le immagini usate sono state fatte il 6/7/2020 da Andrea Aletti dell'osservatorio Schiaparelli di Varese con filtro **R** e esposizione di 1 secondo.

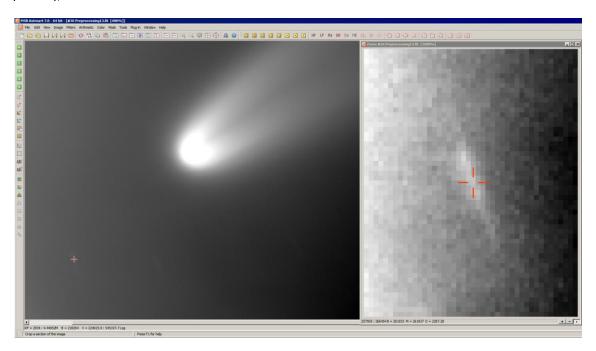
E' evidente come le stelle in questa immagine (sopra) siano quasi invisibili. Quelle visibili (sotto) sono disposte quasi in orizzontale, tale disposizione non è quella più adatta per fare della buona calibrazione astrometrica.



L'errore che si commetterebbe non sarebbe tanto riferito alla posizione, ma quanto all'inclinazione dell'immagine, ossia di quanti gradi/primi la camera CCD è inclinata rispetto al Nord (o all'equatore celeste se ci riferiamo al lato orizzontale/lungo del sensore.


Per ovviare a ciò è sufficiente riprendere un campo qualsiasi con stelle a inizio o fine serata e astrometrizzare l'immagine, nelle statistiche sarà leggibile l'angolo di inclinazione (evidenziato in giallo) come da esempio sotto ricavato da AA.

```
#8 NoName00.fit
     . . . . . . . . . . .
Size .....
                765 x 510
                21.47' x 14.34' , -3.1°
Field of view ..
Pixel scale .... 1.6" x 1.6"
Center .....
                06 07 16.3 +34 18 19
Pixels
                390150
      . . . . . . . . .
    Max ..... 59274 @ 197,144
Background .... 2704
Average ..... 2760.8679
Sum ..... 1077152602
Std.deviation ..
                690.52288
```

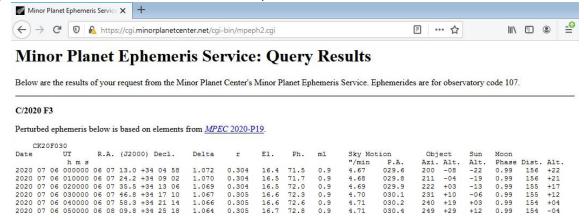

A questo punto possiamo allineare le nostre immagini, l'unica accortezza sarà quella di utilizzare l'allineamento a una stella. Il menù è quello solito di AA come sotto.

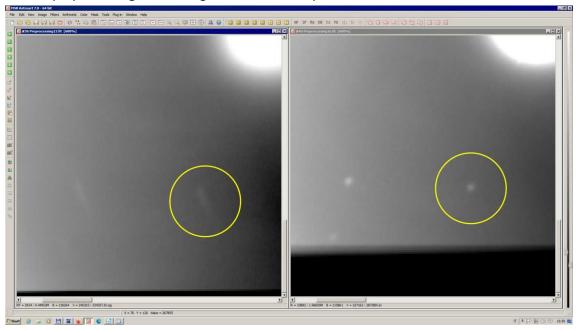
Ora scegliamo come detto sopra la modalità di allineamento a una stella che troviamo in [Option] e [Align].

In [Radius] inseriamo un valore grande, in questo caso 100, in mancanza di questo valore AA sceglierebbe il valore più alto nell'immagine, se ci fosse una stella più luminosa della cometa prenderebbe quel valore sbagliando l'allineamento. Premiamo i vari [Ok] e lanciamo l'allineamento. Il risultato è visibile sotto. Notiamo come la cometa sia stata allineata correttamente (a sinistra), lo si nota dall'ingrandimento delle stelle (destra), ove vediamo la classica strisciata.

Ora dobbiamo creare l'immagine allineata sulle stelle, è possibile che di stelle non se ne vedano sulle singole immagini perché l'esposizione è stata troppo breve, ma potrebbero rendersi visibili dopo una media o somma.

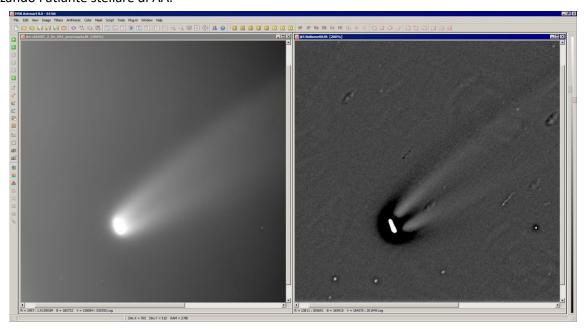
Visto che siamo riusciti ad allineare l'immagine sul nucleo della cometa possiamo riallineare le immagini sulle stelle (anche senza vederle) utilizzando il moto della cometa rendendolo negativo.


Ecco evidenziati in giallo i cambiamenti di moto.

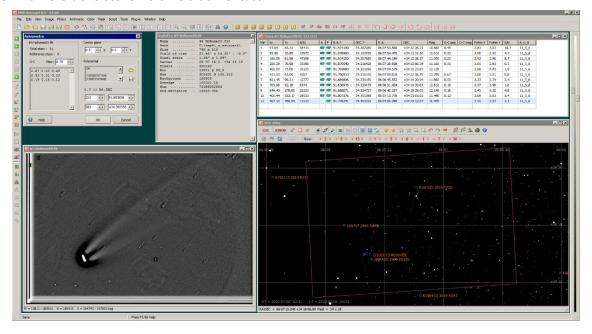

Esso è ricavabile da vari planetari oppure dal solito sito dell'MPC -

https://minorplanetcenter.net/iau/MPEph/MPEph.html

che produce come risultato una schermata del tipo:


Il risultato del preprocessing a moto negativo è visibile in questa schermata.

A sinistra la strisciata delle stelle e a destra il riallineamento con il moto negativo. Dato che la cometa si muove molto velocemente i valori di moto cambiano molto velocemente e questo tipo di "riallineamento" andrebbe fatto subito con gli elementi orbitali della sera, meglio ancora un SW che permetta l'allineamento con il ricalcolo in tempo reale del movimento della cometa. Se si aspetta qualche giorno gli elementi


potrebbero venir aggiornati e diverrebbe "complicato" risalire agli elementi di quella sera alla tal ora. Se poi si fanno passare mesi sicuramente non saranno più gli stessi.

A questo punto possiamo astrometrizzare manualmente l'immagine appena ottenuta con le stelle utilizzando l'atlante stellare di AA.

A sinistra l'immagine originale priva dell'astrometria e a destra l'immagine ottenuta come spiegato sotto. Siccome le stelle visibili sono poche e quelle presenti non sono visualizzabili bene, possiamo utilizzare un piccolo trucco per "spianare" il campo e ottenere un valore di bg uniforme.

Duplichiamo l'immagine e ad essa applichiamo un filtro di sfocatura (Gauss) di valore 4. Poi dividiamo il nostro originale per l'immagine sfocata, otteniamo una immagine come sopra a destra. Risulta evidente come il numero delle stelle visibili sia aumentato.

Sopra schermata che mostra le varie finestre coinvolte nell'astrometria con Astroart.

Manualmente abbiamo selezionato 11 stelle, di queste AA ne ha scelte 9 con residui calcolati rispetto alla posizione del catalogo di riferimento ben al di sotto al secondo d'arco:

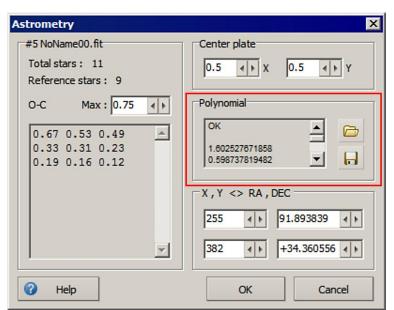
0.67	0.53	0.49
0.33	0.31	0.23
0.19	0.16	0.12

La finestra di statistica oltre a varie voci ci restituisce quelle che più ci interessano, che sono:

...

Size: 765 x 510 - X e Y della nostra immagine in pixel

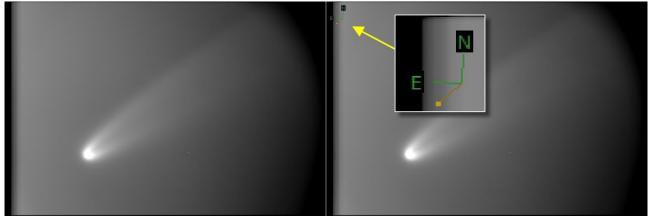
Field of view: 21.46' x 14.35', -3.0° - campo della CCD in primi e inclinazione in gradi


 Pixel scale:
 1.6" x 1.6"
 - scala in arc-sec/pixel

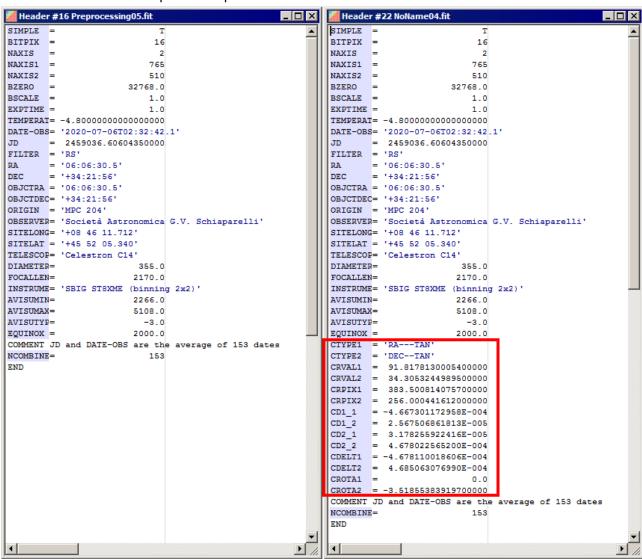
 Center:
 06 07 16.3 +34 18 19
 - AR e Dec del centro lastra

...

Ora che abbiamo l'astrometria fatta sulle stelle la possiamo salvare è importare successivamente nell'immagine della cometa.


Dalla finestra di Astrometria salviamo i parametri delle WCS in un file.

Il file verrà salvato come (nome_da_me_scelto.apo). Sotto un esempio del contenuto.


```
AstroArt astrometric file
1.60252314883988E+0000
5.98740863471751E-0001
-8.14597726503104E-0006
4.48114483061839E-0007
2.94425433178627E-0003
5.54710303171687E-0007
8.16468962453311E-0006
-2.39202368415058E-0003
```

A questo punto possiamo caricare in Astroart l'immagine della cometa e da **[Tools]** – **[Astrometry]** o da scorciatoia da tastiera **(Shtft + Ctrl + F11)** richiamare il file **(*.apo)** appena salvato e otterremo il seguente risultato. Ricordiamoci di salvare l'immagine appena astrometrizzata.

A sinistra l'immagine NON calibrata a destra calibrata, notiamo la comparsa del simbolo (WCS) di orientamento Nord – Est e la direzione del Sole.

Le intestazioni dei due file prima e dopo l'astrometrizzazione:

Va momentaneamente ricordato che è presente un errore di rotazione nell'importare l'astrometria dalla immagine delle stelle all''immagine della cometa. La cometa è stata allineata sul nucleo le stelle con l'atlante. Momentaneamente per i nostri scopi risultata accettabile. Ciò detto, è certo che sarebbe meglio allineare correttamente almeno entro un grado (meglio se più preciso) la camera CCD.

AFRHO con stelle di riferimento esterne al campo inquadrato.

Introduzione:

Generalmente il protocollo utilizzato per la fotometria utilizzato nell'ambito del Progetto **CARA** prevede di utilizzare stelle di confronto reperibili nello stesso campo della cometa, e questo è generalmente possibile utilizzando i cataloghi **Hipparcos/Tycho** e **UCAC**.

Vi sono però situazioni nelle quali non è possibile utilizzare il metodo standard prefissato, o perché disgraziatamente ci si trova in una zona povera di stelle e non ben coperta dai cataloghi, o anche, come nel caso della C/2020 F3 (NEOWISE) perché, operando su di una cometa luminosa i tempi di posa sono forzatamente molto brevi ed anche mediando più immagini troveremo probabilmente poche stelle utili e con un rapporto segnale rumore (S/N) molto basso per poter fare una buona fotometria. Inoltre chioma e coda di una cometa luminosa spesso riempiono una ampia zona del campo, lasciando poco spazio per trovare stelle di confronto che non siano sovrapposte alla cometa. In questi casi si può essere costretti a selezionare stelle di confronto in campi adiacenti e questo comporta diversi problemi, soprattutto con oggetti a scarsa elevazione al di sopra dell'orizzonte e/o in presenza del crepuscolo astronomico.

Vediamo come affrontare correttamente queste situazioni.

Magnitudini strumentali ed estinzione atmosferica:

Prima di descrivere in dettaglio la procedura da utilizzare è opportuno ricordare alcuni aspetti importanti. Quando riprendiamo un campo con il nostro telescopio e andiamo a misurare la magnitudine delle stelle, i primi valori che otterremo saranno delle "magnitudini strumentali", dove il punto zero della scala è determinato dal nostro sistema (sensore, strumento, filtro, condizioni del cielo...). Assunto che il nostro sistema fotometrico coincida con un sistema fotometrico standard (nel nostro caso usualmente la banda R di Cousins) le nostre magnitudini strumentali delle stelle di campo differiranno tutte di una costante dalle magnitudini reali in banda R. Questo se il campo non è eccessivamente ampio e quindi assumendo che tutti gli oggetti subiscano lo stesso assorbimento atmosferico.

Ora, se utilizziamo una o più stelle esterne questa situazione non è più soddisfatta in modo rigoroso, sia perché stella e cometa saranno riprese in tempi diversi, sia perché l'elevazione sull'orizzonte potrebbe essere diversa e variare nel tempo. Sotto questo punto di vista la situazione ideale la si avrebbe osservando in meridiano perché in questo caso per lo meno l'assorbimento atmosferico rimarrebbe costante per un certo intervallo di tempo, o varierebbe di poco. Ma è una situazione rara, più di frequentemente ci troveremo in condizioni diverse.

Esempi di gradienti, immagini della C/2020 F3 (NEOWISE).

Sopra immagine all'alba 8/7/2020 con cielo disturbato da nuvole Nottilucenti.

Sopra immagine all'alba 9/7/2020 con cielo limpido.

Sotto immagine al tramonto del 10/7/2020 con cielo sereno ma con foschia.

Le immagini rendono chiaramente le difficoltà osservative all'inizio di luglio, cielo chiaro, limpido e lattiginoso con gradienti e poche stelle visibili. La probabilità di avere stelle di confronto utili nel campo e non sovrapposte alla cometa è piuttosto scarsa. L'uso di una stella in un campo esterno a volte può quindi essere l'unica strada praticabile.

In questi casi la soluzione più semplice è trovare un campo con una o più stelle che possa essere ripreso alla stessa elevazione sull'orizzonte riscontrata per le riprese della cometa, quindi soggette allo stesso assorbimento atmosferico. Questo richiede una accurata programmazione ed un cielo che rimanga ragionevolmente stabile durante le osservazioni. L'estinzione atmosferica può essere calcolata facilmente partendo dalla distanza zenitale dell'oggetto con la semplice formula che fornisce la massa d'aria corrispondente:

(1)
$$X \cong \sec Z$$
 (sec= secante = 1/coseno)

Dove **X** è la massa d'aria che è pari a 1 allo zenit e crescerà di valore verso l'orizzonte. **Z** è la distanza zenitale in gradi, usata perché dà un riferimento rigoroso per il calcolo della massa d'aria, diversamente un riferimento all'orizzonte risente di una certa ambiguità variando con l'altezza sul livello del mare. Questa formula è valida per distanza zenitali fino a 60-70 gradi, per valori maggiori diverge da valori reali perché non viene tenuta in considerazione la curvatura della Terra e della stessa atmosfera.

Una formula più rigorosa permette di calcolare valori che potranno essere accurati teoricamente intorno al 10% vicino all'orizzonte.

(2)
$$X = \sec Z - 0.0018167 (\sec Z-1) - 0.002875 (\sec Z-1)^2 - 0.0008083 (\sec Z-1)^3$$

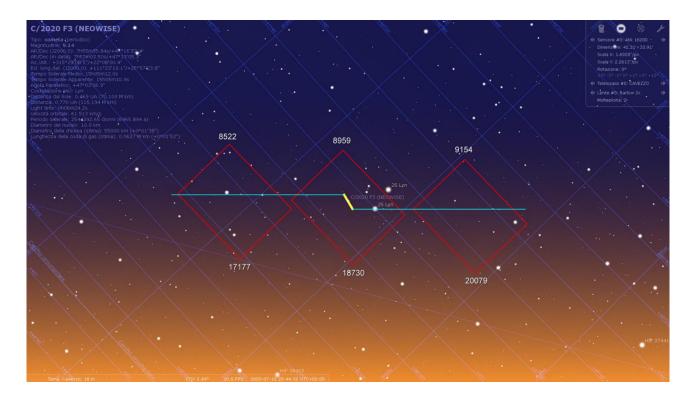
Va da sé che questa formula è comunque una approssimazione e rappresenta un cielo medio di un certo sito in un dato periodo. Le condizioni potranno variare considerevolmente a seconda del sito, della sua

altezza sul livello del mare e delle condizioni meteorologiche, soprattutto per valori prossimi all'orizzonte. Ovviamente la situazione reale potrebbe divergere notevolmente da quella teorica in presenza di foschie o velature.

PRIMO CASO: campo stellare vicino alla cometa.

Il campo con la stella (o stelle) di confronto dovrà essere preferibilmente vicino alla cometa. La distanza entro la quale possiamo considerare trascurabile l'effetto differenziale dell'assorbimento atmosferico varia a seconda dell'elevazione sull'orizzonte e delle condizioni del cielo nel sito di osservazione. Indicativamente sotto un cielo di buona qualità e con una cometa alta sui 20° al di sopra dell'orizzonte possiamo utilizzare stelle che si trovino al massimo ad 1 grado dalla cometa (falso nucleo). Ad una elevazione di 30° possiamo ampliare l'area fino a 3 gradi di raggio e a 40° allargarla ulteriormente fino a 5°. Intuitivamente è chiaro che in queste situazioni conviene avere uno strumento con un campo relativamente ampio, e, se lo scopo è la fotometria, usiamo focali relativamente corte, in modo da inquadrare simultaneamente cometa e stelle di confronto, eventualmente decentrando un po' la cometa. Idealmente la scala immagine dovrebbe essere intorno a 1-2 arc-sec/pixel, ma ci si può spingere anche a scale fino a 4-5 secondi d'arco/pixel avendo cura di effettuare una sequenza di immagini più lunga possibile, compatibilmente con le condizioni osservative. La ripresa di una sequenza relativamente lunga aggiunge alcuni inconvenienti legati alle variazioni del cielo, sia per la diversa estinzione atmosferica che per la presenza del crepuscolo se la cometa ha una piccola elongazione solare. L'immagine risultante avrà generalmente un gradiente di fondo cielo piuttosto accentuato e che dovrà essere corretto mediante sottrazione.

L'operazione di sottrazione di un gradiente sintetico è un'operazione delicata e **NON propriamente lineare**, se costretti evitiamo le correzioni automatiche, ma generiamo un file di correzione selezionando manualmente i punti di riferimento per misurare il gradiente.


Le correzioni automatiche possono facilmente essere ingannate dalla presenza della chioma e da altri oggetti presenti nell'immagine introducendo ulteriori errori casuali. E' una operazione che per aver successo richiede in partenza la realizzazione di un Flat-field praticamente "perfetto" e di grande attenzione nella scelta dei punti di campionamento escludendo la chioma e la coda e distribuendoli più uniformemente possibile sul frame. Anche così non è detto che la correzione vada a buon fine. Se questo accade si è costretti a procedere per tentativi, ridurre il numero di immagini da mediare e operare in un intervallo di tempo nel quale il cielo si possa ritenere sufficientemente stabile.

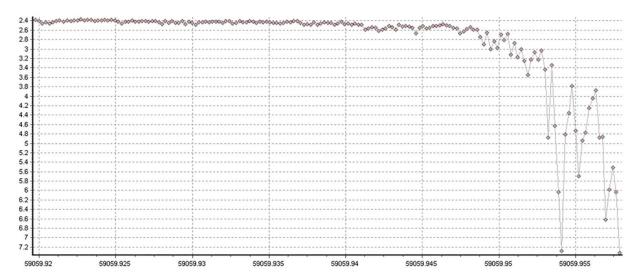
Volendo si potrebbero riprendere tre immagini di un campo stellare adiacente evitando di sovrapporre le stelle, fare la **mediana/sigma** e poi sottrarle alla cometa. E' una specie di - **simil-flat** - che va però **sottratto**. Variazioni ambientali improvvise, e quindi cambiamenti nella situazione strumentale (anche il cielo è un effetto strumentale!) rendono a volte impossibile ottenere una immagine "misurabile", anche se da parte nostra abbiamo fatto correttamente tutto quel che era necessario. In questi casi, per fortuna rari, non potremo rimediare in alcun modo e le immagini non potranno essere utilizzate per fotometria.

Non cerchiamo di rimediare via software con metodi di fotoritocco perché non faremo che peggiorare la situazione. Non c'è nulla da fare. D'altra parte l'imponderabile fa parte del gioco!.

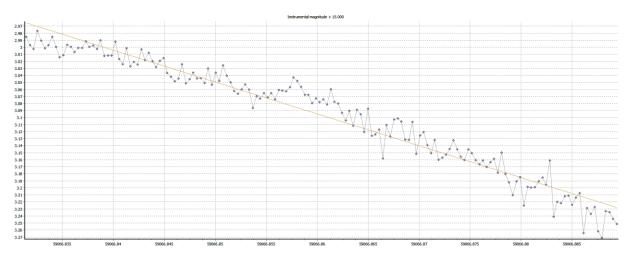
SECONDO CASO: stella su un campo esterno

Dovendo scegliere un campo stellare esterno si deve cercare di trovarne uno che mediamente si venga a trovare alla stessa elevazione sull'orizzonte della cometa. Si procederà alternando sequenze di ripresa del campo e della cometa. Ad esempio: **CAMPO > COMETA > CAMPO > COMETA**, automatizzabile con vari sw o via Astroart con gli script.

Nell'immagine sopra un esempio di quanto sopra accennato. Winafrho gestirsce immagini con esposizioni differenti, le sequenze sul campo di confronto potranno essere più brevi e quelle sulla cometa più lunghe.


Mediando le rispettive immagini dovremmo poter avere alla fine cometa e campo stellare alla stessa elevazione sull'orizzonte. Piccole differenze di altezza devono ricadere nei limiti indicati sopra per la distanza limite dalla cometa per le stelle di confronto.

In questi casi una prima verifica si può effettuare sulle tracce stellari nell'immagine allineata sulla cometa. Se queste appaiono regolari e di intensità uniforme è già un buon segno. Ma è molto utile effettuare anche una verifica più accurata sulla stabilità del cielo effettuando una "fotometria batch" ad esempio su tutte le immagini della cometa, misurando ADU e/o magnitudine strumentale di una stella non satura e non sovrapposta alla cometa. Si farà poi una curva di luce, trattando la nostra stella come se fosse variabile. La curva avrà un andamento lentamente ascendente o discendente, a causa del diverso assorbimento atmosferico. Quello che è importante è che la curva sia ben delineata, la presenza di fluttuazioni indica la presenza di nubi, velature o foschie. Nel caso è preferibile escludere le immagini in corrispondenza delle variazioni.


La stessa cosa può essere fatta con una stella del campo di confronto, per verificare che anche lì non vi siano variazioni indotte da nubi o velature.

Se si opera al crepuscolo il cielo può essere molto variabile ed è possibile la formazione di velature o foschie temporanee.

Per questa analisi si possono utilizzare direttamente le funzioni di fotometria già incluse in molti software. In Astroart è ad esempio la funzione "fotometria batch".

Sopra un esempio, notare come la variazione atmosferica abbia agito repentinamente. Saranno da scartare tutte le immagini verso la fine della sessione, risentendo dell'assorbimento. Immagine della C/2020 F3 ripresa da Daniele Carosati il 29/7/2020.

Sopra un esempio di assorbimento/degrado costante, nonostante la cometa a metà sessione si trovasse ad appena 15 gradi sull'orizzonte. Il valore di assorbimento è alquanto contenuto, c'è una differenza di circa 0.3 mg. Sempre C/2020 F3 del 5/8/2020 da Cavezzo.

Attenzione!, dobbiamo selezionare SOLO una sola stella, altrimenti il software considererà la prima stella come una stella variabile e la seconda come di confronto, mostrando solo la differenza di magnitudine tra le due. Si possono scoprire piccole variazioni di cielo che nel nostro caso potrebbero essere importanti. A noi interessa la magnitudine strumentale di una sola stella che ci indica in sostanza se il flusso di fotoni ricevuto, e quindi la trasparenza del cielo, è rimasto costante nel tempo, evidenziando principalmente la variazione a lungo termine prodotta dall'assorbimento atmosferico.

Nota: Se le stelle scelte sono luminose probabilmente avranno generalmente una magnitudine di catalogo più accurata e un altrettanto accurato controllo sulla possibile variabilità. Per contro richiederanno tempi di esposizione brevi, che risentono maggiormente della scintillazione atmosferica, e, se molto brevi, di effetti correlati all'otturatore meccanico o allo scaricamento dell'immagine. Un tempo di posa di circa 5-20 secondi generalmente mette al riparo da questi problemi.

Si dovrebbe comunque sempre effettuare un test di linearità della propria camera per verificare accuratamente l'intervallo di dinamica utile per la fotometria e che ci riveli anche eventuali problemi sulle brevi esposizioni legati a quanto detto sopra. Nel caso di un nuovo acquisto orientarsi preferibilmente su di una camera che dia garanzie di ottima linearità in tutto l'intervallo coperto dalla sua dinamica.

TERZO CASO: cometa e campo a diverse elevazioni sull'orizzonte.

Caso sfortunato e complesso, in quanto dovremo procedere come nel caso precedente ma calcolare anche l'effetto dell'assorbimento atmosferico sul campo stellare e cometa per calcolare un fattore correttivo da apportare alla magnitudine di catalogo della stella di confronto per compensare il diverso assorbimento dei due oggetti.

L'approccio al problema dell'assorbimento atmosferico è qui semplificato ma sufficiente ai nostri scopi e per i nostri attuali livelli di precisione. Quello che ci occorre, oltre alla magnitudine strumentale, è anche la massa d'aria corrispondente ad ogni immagine, o per semplificare, per ogni gruppo di immagini mediando le sequenze di ripresa del campo. Ponendo in un grafico la magnitudine strumentale in funzione della massa d'aria potremo interpolare una retta il cui coefficiente ci dà una misura diretta delle condizioni del nostro cielo per quanto riguarda l'assorbimento atmosferico. Ci servirà poi la massa d'aria relativa all'immagine media della cometa. Se i nostri campi sono ad una elevazione di almeno 30° sull'orizzonte è generalmente sufficiente utilizzare la formula (1); se invece siamo più prossimi all'orizzonte (a meno di 30 gradi di elevazione) la formula (2) risulta più accurata.

Segue un esempio di calcolo della magnitudine strumentale per mezzo della "fotometria batch" di Astroart su cinque immagini scelte ad intervalli regolari. Il software genera un file contenente il nome, le aperture utilizzate per la fotometria, la data giuliana e il corrispondente valore ADU per una stella di campo di decima magnitudine con S/N intorno a 700.

I dati sono stati ottenuti con filtro R.

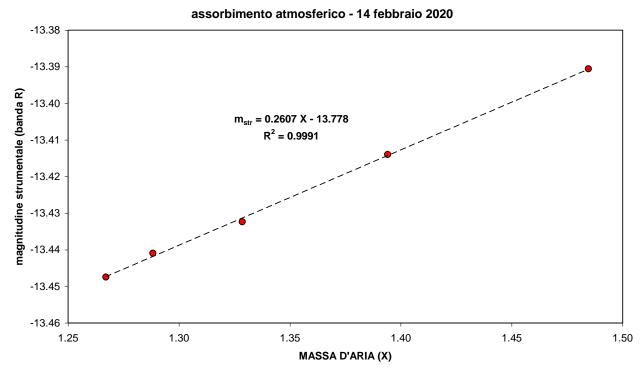
```
78PR001.fit ... 78PR045.fit
# Images = 5
# TimeStart = 2020-02-14T20:28:59    TimeEnd = 2020-02-14T21:57:59
\# AGB = 13 5 8
# Julian Date Object ADU
                             Reference stars ADU
2458894.35347
                  239322.0
2458894.43635
                  227103.0
2458894.37313
                   237892.0
2458894.39420
                   236019.0
2458894.41528
                   232057.0
```

Si nota un lieve aumento dei valori ADU nel tempo per l'aumento della elevazione sull'orizzonte. La magnitudine strumentale è ottenuta con la semplice formula

$$(1) mstr = -2.5*log(ADU)$$

e interpolando otterremo poi la formula

$$(2) m_{str} = K * X + \zeta$$


dove ${\bf K}$ è il coefficiente che quantifica l'assorbimento atmosferico per la corrispondente massa d'aria ${\bf X}$, ${\bf \zeta}$ la costante che definisce la differenza tra la magnitudine strumentale e la magnitudine del sistema standard di riferimento.

Riferendoci alla banda fotometrica **R** (Cousins, Bessel) per un sito di osservazione di qualità eccellente avremo per **K** un valore indicativamente intorno a 0.1. Un valore 0.2 indica una situazione mediocre e 0.3-0.4 scadente. Va da sé che peggiore è la qualità del cielo maggiore è la probabilità che vi siano variazioni di trasparenza, soprattutto dopo il tramonto o prima dell'alba. Un cielo fotometrico è una condizione frequente nei siti professionali di alta quota e caratterizzato da una elevata stabilità per tutta la notte, una condizione non frequente e/o rara nei nostri siti di osservazione. Un indizio qualitativo per una buona serata è quello di non avere alcuna velatura o nuvola all'orizzonte verso Ovest al tramonto, e che non vi siano perturbazioni atmosferiche prossime all'arrivo. Come sappiamo l'atmosfera terrestre è uno degli ambienti più complessi e le variazioni a livello locale possono essere a volte imprevedibili. Su questo l'esperienza dell'osservatore e la conoscenza del clima del proprio sito e delle variazioni stagionali del cielo aiutano molto a valutare le prospettive per la serata.

I dati relativi a JD e ADU sono riportati su un foglio excel predisposto per il calcolo.

JD	ADU	Н	Х	MAG STR
2458894	227103	42.20	1.48	-13.39
2458894	232057	45.70	1.39	-13.41
2458894	236019	48.70	1.33	-13.43
2458894	237892	50.80	1.29	-13.44
2458894	239322	52.00	1.27	-13.45

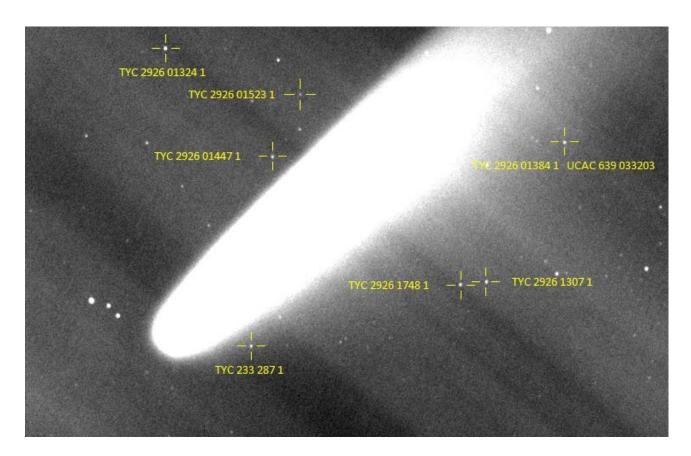
Da questi otteniamo il grafico riportato in figura sotto che ci dà la formula della retta interpolata con il coefficiente di estinzione atmosferica. L'interpolazione della retta risulta eccellente e la dispersione dei punti appare inferiore al millesimo di magnitudine, indice di un'ottima stabilità del cielo.

Un andamento non rettilineo del grafico non è un buon segno e indica che nella nostra serata l'assorbimento atmosferico non viene ben rappresentato dai modelli teorici utilizzati. Se esiste una parte ben rettilinea (e se la parte che se ne discosta ha una deviazione lieve) si può provare ad operare all'interno

di essa, altrimenti è meglio rinunciare senza avventurarsi in approcci empirici che potrebbero portare fuori strada.

Supponiamo di aver ripreso la cometa (tempo medio della sequenza di riprese) quando si trovava in corrispondenza di una massa d'aria di 1,5 e di aver ripreso la stella di confronto con massa d'aria di 1. Dovremo introdurre una correzione alla magnitudine della stella per normalizzarla per lo stesso assorbimento atmosferico della cometa.

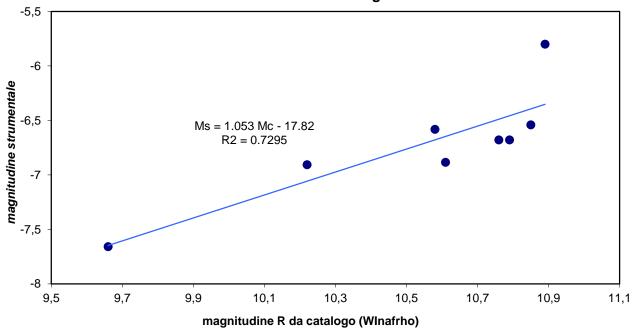
La magnitudine corretta per la stella di confronto, da sostituire manualmente in Winafrho a quella **R** derivata dal catalogo si può ricavare con la formula


(5)
$$M^* = K(Xc - Xs) + M_{cat}$$
 0.2 * (1.5 - 1) + 10 = 10,10

Dove **M*** è la magnitudine della stella corretta per il diverso assorbimento rispetto alla cometa, **Xc** e **Xs** è la massa d'aria relativa rispettivamente alla stella e alla cometa, **M-cat** è la magnitudine **R** data da Winafrho estratta dai cataloghi a disposizione (*UCAC*, *Tycho*).

Ipotizzando una stella di magnitudine **R** = **10** e **K** = **0,2** per la situazione descritta sopra la magnitudine corretta della stella sarà **10,10**. Cioè riportata al livello di assorbimento della cometa apparirebbe più debole di un decimo di magnitudine. Può non sembrare molto, ma avere magnitudini stellari di riferimento più accurate possibile è fondamentale per ottenere un migliore valore finale di Afrho, che, ricordiamo, è una quantità molto critica da determinare in quanto risente molto di tutte le fonti di errore, e gli errori si sommano sempre.

QUARTO CASO: condizioni di cielo non stabili, transito di velature e stelle di confronto nel campo e non sovrapposte (se non marginalmente) alla cometa.


In questo caso la situazione è compromessa dal transito di nubi e dalla scarsa elevazione della cometa sull'orizzonte. Ovviamente è impensabile riprendere un campo esterno perché l'effetto delle velature potrebbe essere molto diverso su di esso. Non resta che utilizzare le stelle di campo, che presentano un basso S/N e non hanno per lo più una elevata precisione fotometrica nel catalogo. Il caso è piuttosto problematico trattandosi della cometa C/2020 F3 (NEOWISE) ripresa da Padova la mattina dell'8 luglio 2020 in presenza di nubi nottilucenti in veloce transito. Il S/N della cometa è molto alto, ma la misura sulle stelle è problematica.

Per scegliere quelle più affidabili si è ricorso ad una verifica interna valutando la consistenza dei valori (magnitudini) delle stelle. Sono state selezionate sette stelle con indice di colore il più vicino possibile a quello solare. Una stella appariva sia sul catalogo Tycho sia su UCAC, il che ha permesso una verifica più accurata su quella stella. Alcune stelle si trovano ai margini della coda, situazione non ideale, ma non essendoci molte stelle a disposizione sono state incluse nell'analisi. Lo stretta visualizzazione dell'immagine aiuta a trovare gli eventuali confini della cometa, aiutandoci nella selezione delle stelle e a valutarne la posizione.

Il grafico che segue riporta la magnitudine **R** di catalogo vs. la magnitudine strumentale e ci fornisce il quadro della situazione. La formula **Ms = n * Mc – Q**, dove **Ms** è la magnitudine strumentale, **n** la pendenza della retta, **Mc** la magnitudine di catalogo e **Q** una costante che indica la differenza tra magnitudine strumentale e di catalogo. Il valore di (**n**) è prossimo a **1**, il che significa che vi è una buona corrispondenza tra la il nostro sistema fotometrico e la banda **R** standard. L'indice di correlazione **R**² però non è buono e infatti la deviazione standard è **0,27**, valore piuttosto elevato e che deriva dalla complessità della situazione, con una bassa qualità fotometrica delle stelle, uno scarso rapporto segnale/rumore (S/N) e dal disturbo delle nubi luminescenti e della coda della cometa.

Test stelle di confronto 8 luglio 2020

La scelta alla fine è caduta sulla stella TYC 2926 1748 1 di mag. R 9.9, quella con miglior (s/n 44.3), mentre la TYC 2926 01384 1 / UC4 639-033203 (s/n 20.18) ha rispettivamente magnitudine 10.76 e 10.79 nei due cataloghi, fatto che depone a favore della buona qualità fotometrica della stella nei cataloghi. Considerate le condizioni osservative, la difficoltà di osservare e misurare la cometa a pochi gradi al di sopra dell'orizzonte il dato avrà un errore finale più alto del solito, utile comunque per avere un valore di riferimento nel periodo di maggiore attività della cometa. Questo tipo di verifica interna tra le stelle è utile in tutti quei casi nei quali pur essendo presenti stelle simili al Sole si riscontrano valori divergenti utilizzando diverse stelle. Le differenze possono dipendere da errori di catalogo, scarso S/N, variazioni di cielo, uso di un flat-field mal fatto...

In generale una buona sequenza di immagini e la selezione di stelle con più alto S/N mostra una buona coerenza nel valore Afrho utilizzando la funzione "multiplot" di Winafrho e selezionando le stelle in un intervallo di magnitudine che eviti problemi di saturazione e un S/N troppo basso. Con un pò di esperienza, ciascuno in base alle caratteristiche del proprio strumento, alle condizioni del cielo, e al tempo di esposizione utilizzato, può facilmente identificare l'intervallo per lui più idoneo.

I casi esaminati in questo paragrafo sono un aiuto, linee guida per gestire almeno alcune situazioni particolari o per lo meno per limitare i danni.

Giannantonio Milani, Rev. Mauro Facchini

Bibliografia

- Haenden A.A., Kaitchuck R.H., Astronomical Photometry, Willmann Bell-inc, 1990
- Hale S.J. et al., The Astr. Journal, 154:89 (11pp), 2017
- Romanishin W. Introduzione alla fotometria astronomica con la CCD, Univ. Oklaoma, 2001 (traduzione italiana a cura di Massimo Calabresi, Valerio Fosso, Vincenzo Franchini, Alessandro Maitan, Roberto Pipitone, Enrico Prosperi, Stefano Valentini, Roberto Trabatti)
- Patat F. et al, A&A 527, A91, 2011

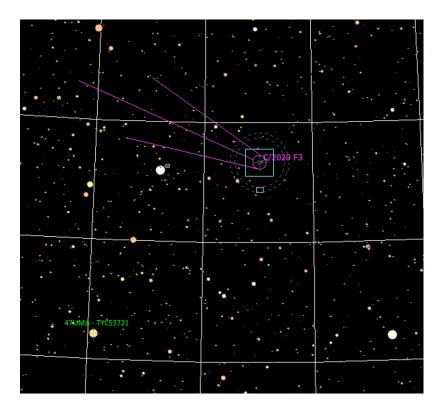
Misurare Afrho su una singola stella.

Winafrho 1.0 è stato una vera rivoluzione per il gruppo CARA perché permetteva di semplificare i processi di calcolo per le misure del caso. La procedura prevedeva il confronto fotometrico di nucleo e chioma con una stella di tipo solare, principalmente estratte dai cataloghi Tycho e Hipparcos. La cosa non è banale in quanto, essendo una cometa un corpo riflettente luce solare, è fondamentale confrontare la luce riemessa dal materiale cometario eterogeneo (polveri e gas) con stelle dello stesso tipo spettrale. Questo portò a vari problemi di tipo pratico in quanto a volte (anche spesso) non si aveva nel campo inquadrato una stella con simili caratteristiche e quindi la globalità delle misure poteva essere affetta dalla scelta della stella di confronto.

In queste situazioni, vi sono grosse difficoltà ad avere stelle nello stesso campo della cometa. Ricordiamone alcune:

- a) La cometa è molto luminosa e praticamente contamina buona parte o la totalità dell'immagine.
- b) La cometa è molto veloce e costringe a tempi di posa molto brevi con la conseguenza di avere un basso rapporto S/N nelle stelle e quindi errori grandi nelle misure finali;
- c) Uso di filtri molto stretti, come il 647nm ad esempio (soli 12nm), riducono moltissimo il flusso in arrivo sul CCD, anche in questo caso avremo un rapporto S/N compromesso come nel caso precedente;
- d) Uso di telescopi di modeste dimensioni, CCD non particolarmente performanti, etc.

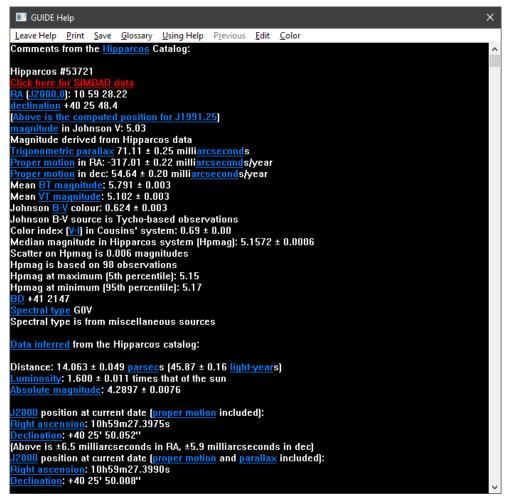
Per ovviare a questi ed altri problemi si pensò di utilizzare tutte le stelle disponibile nel campo in modo da "mediare" i vari errori e piccole differenze di classe spettrale. Dalla versione 2.x, Winafrho implementa una funzione (Multiplot) che permette di avere un elenco di stelle scaricate online del campo inquadrato e di selezionare od escludere (selezionando opportunamente il B-V) quelle che si discostano troppo dalle nostre necessità. Rivoluzione alla quale ci siamo adattati velocemente senza farci rimpiangere la prima versione del programma.


Ciò nonostante, come elencato sopra, possono esserci situazioni dove necessariamente dobbiamo ritornare a valutare la possibilità di dover scegliere una stella specifica per poter avere una certa sicurezza della misura finale. Caso recente è quello della cometa C/2020 F3 (NEOWISE). Cometa molto luminosa ma posizionata a bassissime elevazioni e, almeno nella fase iniziale, con problemi di assorbimento atmosferico, immagini con scarso numero di stelle a disposizione, poco tempo utile per le riprese, etc etc. E proprio in questo caso sono tornate molto utili le esperienze e/o considerazioni che si sono fatte con la prima versione di WinAfrho.

Di seguito, cercheremo di indicare una sequenza di operazioni da fare per ottenere delle misure realistiche e confrontabili tra i vari osservatori.

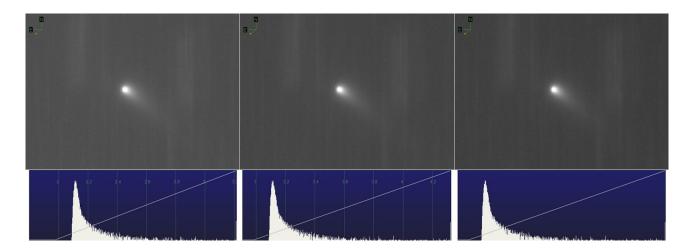

Per prima cosa dobbiamo valutare la dimensione della cometa rispetto al campo inquadrato dal proprio CCD. Una cosa aggiuntiva quanto indispensabile sarebbe quella di dotarsi di un software (GUIDE 9.x ad esempio) che ci permetta di pianificare l'osservazione, il campo inquadrato e le stelle con cui avremo a che fare in quel campo. In definitiva dobbiamo capire se avremo stelle **Tycho** o **Hipparcos** con adeguato **B-V** e magnitudine in modo da essere poi utilizzate in fase di riduzione ed analisi dei dati. Ricordiamo che una stella assimilabile ad uno spettro solare dovrebbe avere un **B-V** compreso tra **0.5** e **0.8** o almeno più vicino possibile a questo intervallo e di tipo compreso tra **F8** e **G5**.

Tramite il suddetto software possiamo verificare la presenza di tali stelle. Nella malaugurata situazione in cui non sia possibile averne una nel campo inquadrato non ci resta altra soluzione che inquadrare un campo quanto più possibile "adiacente" alla cometa (indicativamente dentro il raggio di un grado dal nucleo della cometa e in direzione opposta alla direzione della coda).


Per la scelta del campo "adiacente" utilizzeremo il nostro software per la scelta di almeno una stella con caratteristiche adeguate alla nostra ricerca. Ricordiamoci di prendere dei dark con i medesimi tempi di esposizione che andremo a fare per la ripresa di questo ulteriore campo.

Sopra, il campo inquadrato della cometa con la stella che utilizzeremo. Utilizzando Guide e cliccando con il tasto destro del mouse sulla stella verrà visualizzata una finestra con le caratteristiche che cerchiamo.

Normalmente i dati contenuti sono sufficienti al nostro scopo, ulteriori informazioni le troviamo cliccando su [More info] dove verrà visualizzata una schermata con molte più informazioni.



La schermata contiene solo una parte di tutte le informazioni disponibili.

Si potrebbe essere tentati dal fare degli Sky-flat prossimi all'orizzonte, non è una buona idea. Sarebbe come fare un flat su uno schermo non uniformemente illuminato, cosa che falserebbe l'immagine. Per immagini estetiche senz'altro funziona ma per fare fotometria no!, modificherebbe il flusso delle stelle in varie parti dell'immagine. Non dimentichiamo che il flat **NON** è una correzione del fondo cielo ma dei *rumori strumentali e ottici* di varia natura. Il flat sul cielo dovrebbe essere fatto comunque in una zona sufficientemente alta sull'orizzonte (meglio Zenit) per avere un fondo uniforme.

ATTENZIONE: Si potrebbe estrarre una immagine sintetica del gradiente di fondo cielo, usando, ad esempio i plug-in esterni o integrati messi a disposizione nelle nuove versioni di Astroart. Essi permettono di selezionare manualmente i punti sull'immagine da usare per campionare il gradiente. I sistemi automatici non danno buoni risultati con comete luminose nel campo in quanto interpreteranno parte della cometa (ad es. la coda) come background (fondo cielo) e la correzione non verrebbe perfetta. Questa dovrebbe essere l'ultima razio, nel senso che la generazione di questi gradienti non è molto lineare, spesso - polinomiale - o di altro tipo di cui non si ha il controllo.

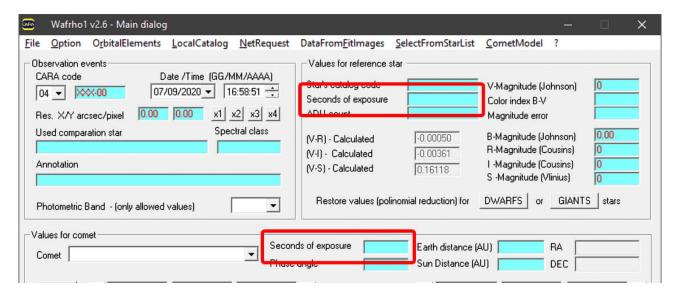
Un'altra alternativa sarebbe quella di riprendere un campo di 3 immagini laterale davanti al nucleo spostandosi per evitare la sovrapposizione delle stelle e utilizzare la Mediana o la Sigma per eliminare le stelle. L'immagine risultante sarà una rappresentazione fedele dei gradienti e la potremo sottrarre all'immagine della nostra cometa.

Sia che si sottragga l'immagine sintetica che quella ottenuta su un campo adiacente il fondo cielo potrebbe avere valori intorno a zero ADU, con probabili pixel negativi, questo crea problemi nelle misure ed è quindi utile sommare poi all'immagine una costante pari al valore di background medio dell'immagine originale. Operazione fattibile da ogni sw astronomico e che viene normalmente chiamata (Shift o Offset).

Pixels 209040	Pixels 209040	Pixels 209040
Min 2088	Min 3088	Min2912
Max 7981	Max 8981	Max 2981
Background . 2113	Background . 3113	Background2887

Nell'immagine sopra troviamo a sinistra l'immagine originale, al centro un offset positivo di **1000 ADU** e a destra un offset negativo di **-5000 ADU**. Nell'ultima immagine vediamo comparire valori negativi (che Astroart tratta e non tronca), se ben guardiamo vediamo come i tre istogrammi siano identici, come pure le differenze. In questo caso abbiamo effettuato una elaborazione lineare, dove nessun pixel ha subito variazione se non di somma identica per tutti. Ora se noi aggiungiamo all'immagine con valori negativi **5000 ADU** il risultato sarà identico all'immagine di partenza.

Riguardo ai campi stellari adiacenti, sarebbe buona norma prendere almeno tre immagini dello stesso campo per poterle mediare. La scelta della stella deve comunque rientrare in determinati criteri, non satura per esempio, non troppo debole, insomma stelle che rientrino in un minimo e massimo di decina (10) o quindicesima (15) magnitudine. Di conseguenza anche le esposizioni andranno calibrate, pose da circa 10 o più secondi producono già ottimi risultati. Riprendiamo una sequenza di più immagini (ad es. una decina), questo per mediare gli effetti della scintillazione atmosferica che affligge le brevi esposizioni. Pose più lunghe risentono meno di questo disturbo.

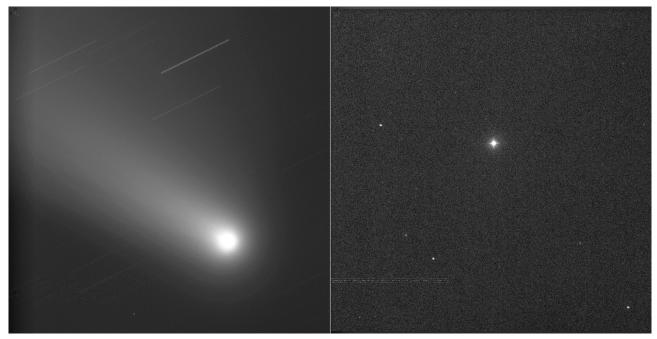

NOTA: l'immagine mediata sarà sempre di qualità migliore di un singolo frame!.

Il passo successivo sarà quello di pretrattare, allineare e astrometrizzare le nostre immagini con i sw in nostro possesso. Tutto ciò permetterà a WinAfrho di poter riconoscere il campo stellare e scaricare i dati relativi di stelle e cometa.

Le immagini che useremo saranno del tipo:

- Media o Sigma della cometa.
- Media o Sigma di un campo di stelle contenente una stella Tycho.

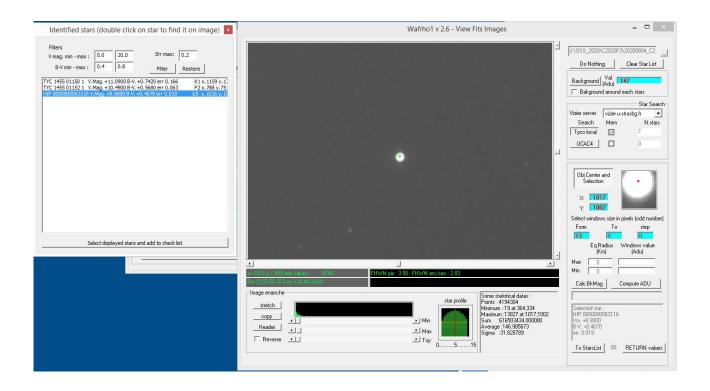
Normalmente si usa lo stesso set di immagini e di conseguenza il tempo di esposizione da inserire in Winafrho è lo stesso, in questo caso bisogna ricordarsi di inserire il tempo di esposizione del campo contenente la stella Tycho scelta.

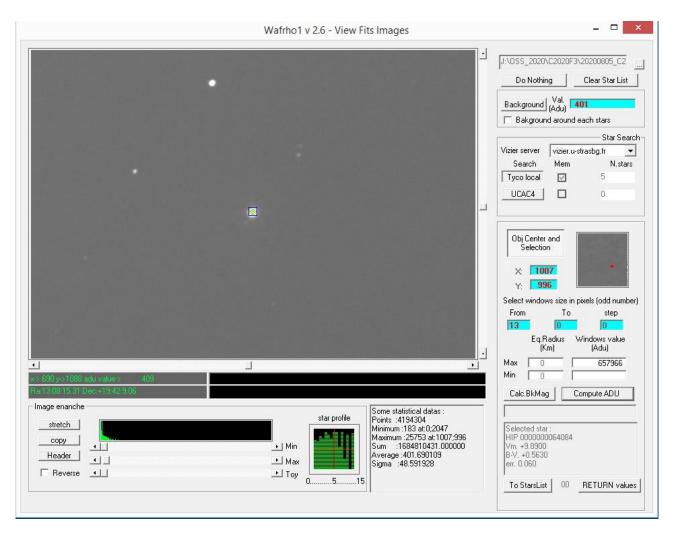


Ad esempio in [Value for reference star] – [Seconds of exposure] mettiamo 10 secondi e in [Value for comet] – [Seconds of exposure] 60 secondi.

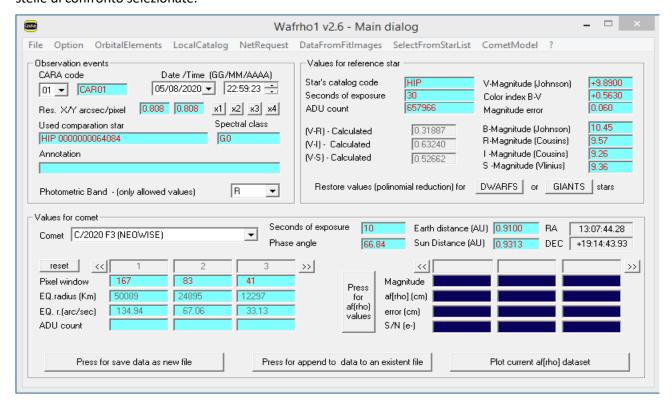
I procedimenti per utilizzare la funzione Multiplot sono già descritti nel manuale. Qui ci concentreremo solo nel caso di voler utilizzare una sola stella che sia nel campo della cometa o su un campo adiacente.

Per la cometa procederemo come da manuale.

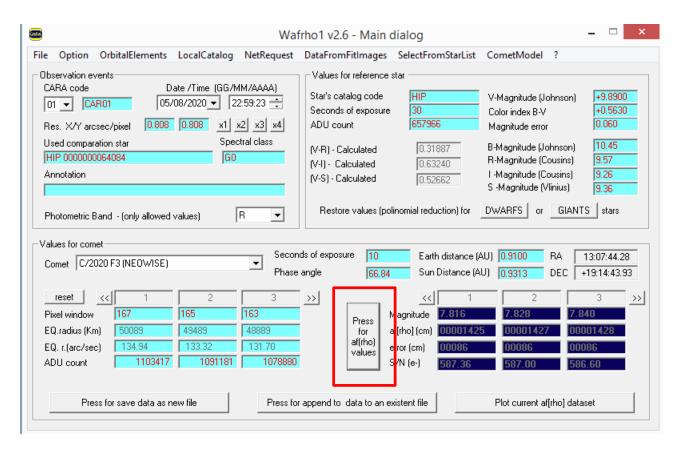

Per la stella invece apporteremo qualche variazione al procedimento standard descritto nel manuale. Prima di cominciare, in fase di trattamento delle immagini, è consigliabile anche annotarsi la posizione X e Y del nucleo cometario e della stella di interesse. A volte la visualizzazione nel riquadro di WinAfrho risulta incerta, ci possiamo aiutare muovendo il mouse e guardando alle posizioni X e Y ed essere certi di non prendere una stella per un'altra. Utile perché più immediato e dinamico controllare il valore di Background [Visualizza] – [Statistiche] e ce lo annotiamo come riferimento per quando lo andremo a scrivere in WinAfrho. Tra le annotazioni, segnamoci anche il nome della stella di riferimento sia con il suo nome dal catalogo TYC e il suo eventuale alias HIP in quanto sono questi i cataloghi con cui la stella può essere identificata in WinAfrho.



Ecco come si presentano le immagini che utilizzeremo, a sinistra la media della cometa e a destra il campo con la stella scelta.


Quindi operativamente:

- 1) Dalla Main page di WinAfrho, nel menù a tendina [DataFromFitImages] [ViewReferenceStar] sceglieremo il file del campo stellare astrometrizzato con la nostra stella di riferimento.
- **2)** Per inserire il valore di background, dobbiamo *deselezionare* la voce [Background around each stars] e invece facciamo un click su [Background] e scriviamo il valore in ADU sul riquadro corrispondente a destra. Quello che ci siamo segnati dalle statistiche di Astroart va benissimo, altrimenti tracciamo un rettangolo vicino alla stella e il programma lo calcolerà automaticamente.
- **3)** Modificare i livelli dell'immagine per poter visualizzare le stelle con sicurezza ed eventualmente aiutandosi con i cursori laterali.
- **4)** nella sezione [Star Search] cliccare su [Tyco local] e aspettare che il programma riceva i dati online. Tipicamente verrà visualizzato il numero di stelle trovato nell'immagine, alle stelle di riferimento verrà sovrapposto un circoletto giallo (se sono 7 stelle avremo 7 circoletti gialli...).
- 5) Cercare quindi la stella di riferimento di nostro interesse e una volta individuata, col il tasto destro del mouse, si apre una finestra aggiuntiva [Identified star] con l'elenco delle stelle Tycho o Hipparcos. Qui tornerà utile l'aver segnato precedentemente le due nomenclature TYC e HIP della nostra stella presa ad esempio dal software GUIDE. Modificando i parametri del filtro si potranno visualizzare più o meno stelle. Facendo ora doppio click sulla stella di nostro interesse (per esempio HIP 63116) apparirà un doppio circoletto fucsia attorno alla stella sull'immagine. Nel riquadro in basso a destra apparirà [Selected star] seguito dai dati relativi alla stella.
- 6) A metà campo sulla destra, sotto a [Select windows size in pixels (odd number)], nella casella [From] dovremo inserire il raggio di apertura fotometrica in pixel desiderato (questo dovrebbe essere circa 3 volte il seeing (rivedersi le indicazioni per la fotometria). Nel mio caso, nell'immagine sottostante è riportato 13.
 7) da ultimo dovremo cliccare su [Compute ADU] e poi [RETURN values]. La finestra si chiude e si ritorna automaticamente alla Main Page di WinAfrho.



La Main Page di WinAfrho, verrà aggiornata con i dati relativi alla stella selezionata e avrà l'aspetto della immagine qua sotto. La funzione multiplot ovviamente non funzionerà in quanto ha bisogno di almeno tre stelle di confronto selezionate.

A questo punto non rimane altro da fare se non cliccare su [Press for af(rho) values] e nella parte bassa appariranno i valori per apertura come mostrato nell'immagine seguente.

Se vogliamo visualizzare la curva dei valori Afrho, cliccheremo su [Plot current Af(rho) dataset] e otterremo un diagramma come segue dove muovendoci con il mouse lungo la curva, potremo vedere a destra visualizzati i valori Afrho in relazione alla distanza dal nucleo determinata in km.

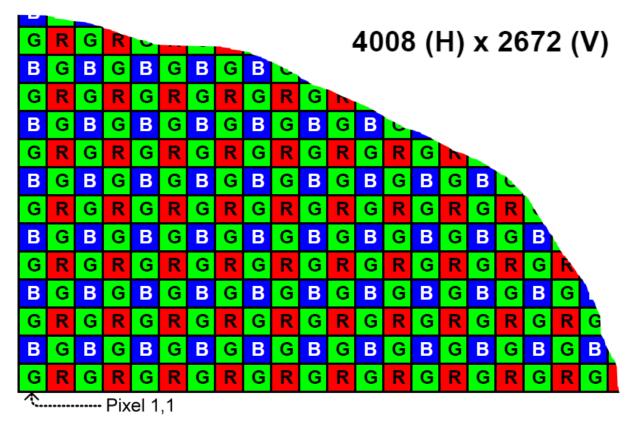
Se siamo soddisfatti del risultato, possiamo poi procedere alla produzione del nostro file CSV cliccando su [Press for save data as new file] pronto per essere poi inviato in archivio. Se si usano più di un filtro, sarà necessario (dal secondo filtro) fare click su [Press to append to data to an existent file] per far si che i dati dei successivi filtri vengano aggiunti allo stesso file di origine.

Daniele Carosati, Rev. Mauro Facchini

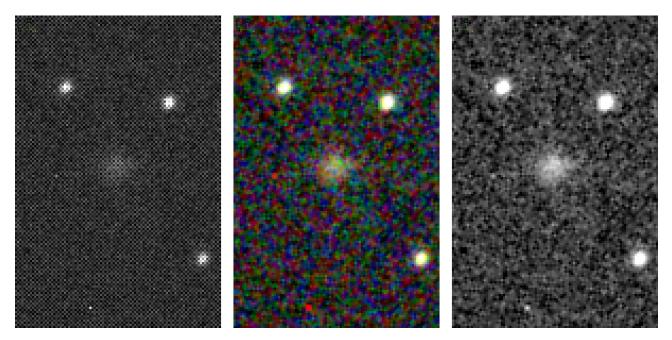
Misurare con CCD a colori (sperimentale)

Premessa.

La fotometria è sempre stata fatta con dispositivi monocromatici, la motivazione è semplice, si semplificano le misure, la stabilità e l'uniformità di esse. Non è che non esistessero pellicole a colori, ma si scontravano con granuli d'argento con sensibilità diverse e decisamente basse che non combinavano con i filtri fotometrici in uso allora. L'avvento dei CCD ha portato con se anche quelli a colori, dove ogni pixel può essere uno dei tre colori primari, ossia Rosso, Verde e Blu. Vi sono stati negli anni anche tentativi di usare i colori complementari Ciano (azzurro), Magenta (viola-rosso chiaro) e Yellow (giallo), che essendo più trasparenti lasciavano passare più luce. Scomparsi nell'arco di qualche anno.

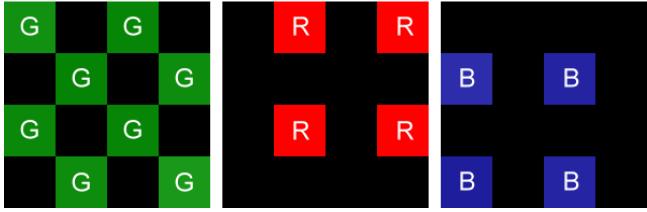

Nell'ambito dell'astrofilia amatoriale per colpa del mercato più votato all'immagine ci si sta lentamente allontanando dai sensori CCD verso dispositivi come i CMOS che però devono ancora dimostrare la loro linearità. Poi sempre più camere nascono a colori e costano meno di quelle monocromatiche.

In ambito CARA si usano solo dispositivi monocromatici, però ci siamo chiesti se per i nostri scopi non si potessero utilizzare CCD a colori, e con quali risultati.

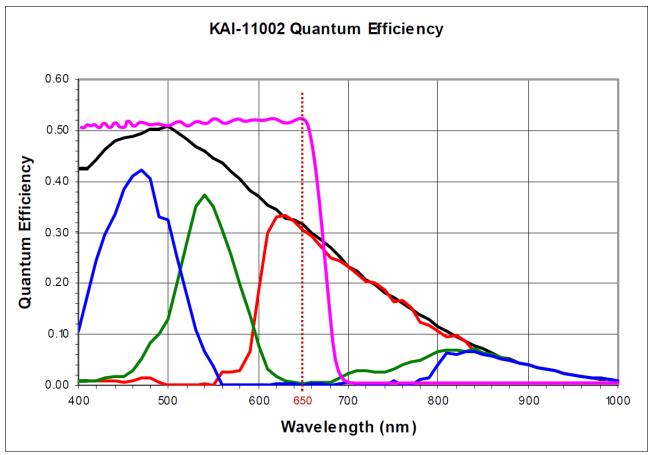

Recentemente utilizzando un telescopio SC da 36cm di proprietà di Sergio Paganelli situato nel paese di Talbignano (MO) che monta una camera CCD a colori con il Kaf11002 abbiamo ripreso la cometa 29/P-Schwassmann-Wachmann-1. Per evitare complicazioni con il colore le immagini sono state fatte in binning 2x2 e non Debayerizzate, con il risultato di avere immagini in tonalità di grigi e scala in arc-sec/pixel dimezzata.

A questo punto sono state misurate con Winafrho utilizzando la normale procedura cambiando la selezione del filtro utilizzato (**Ru**), che è quello da usare quando si riprende senza filtri.

Intanto vediamo come è fatta la struttura di un CCD a colori analizzando la disposizione dei pixel, la risposta alla sensibilità e quali lunghezze d'onda vengono lasciate passare.



Sopra la disposizione dei filtri rosso, verde e blu del Kaf11002. E' interessante notare come tale disposizione privilegi un numero maggiore di pixel verdi. Ciò è spiegabile per poter aumentare il rapporto segnale rumore data la minor sensibilità dei pixel Blu e Rossi.

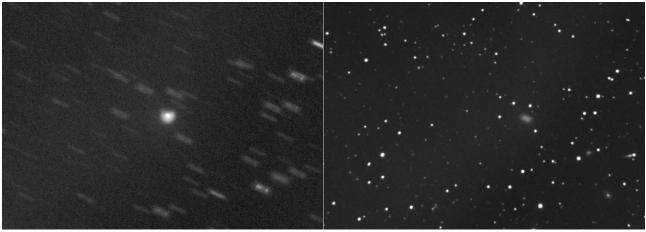

A sinistra l'immagine prima della conversione a colori, al centro l'immagine convertita a colori (Debayering), a destra l'immagine convertita in monocromatico.

In realtà l'immagine di sinistra è composta da tre immagini monocromatiche dove ogni frame contiene solo i pixel corrispondenti ai tre colori, in mezzo non c'è informazione come da immagine seguente.

Nell'operazione di conversione a colori si utilizzano algoritmi più o meno sofisticati che "mediano" i pixel colorati in orizzontale e in verticale andando a riempire quelli senza informazione, poi uniti a formare l'immagine a colori. Da ciò si capisce come una parte dell'informazione risulti senza "senso fotometrico"; è inventata.

La sensibilità dei tre colori poi non è uniforme, lo si evince dal grafico riportato sotto.

La riga nera è la curva di sensibilità del Kaf11000 monocromatico, a colori la faccenda si complica lasciando dei buchi dati dall'incrocio delle curve di trasmissione, li il CCD è meno sensibile. A ciò si aggiunge che tutti i CCD a colori hanno un trattamento di blocco della radiazione infrarossa IR-cut, riga viola. Questo trattamento serve per ottenere colori naturali. Se si usano telescopi rifrattori impedisce alla radiazione infrarossa di essere letta. Ciò si rende necessario perché l'infrarosso non viene messo a fuoco nella stessa posizione degli altri colori. Si avrebbero delle stelle con vistosi aloni intorno. Nei riflettori tale problema non si pone, gli specchi mettono a fuoco nello stesso punto tutte le lunghezze d'onda, non soffrono di aberrazione cromatica, è assente.


NOTA:

I doppietti rifrattori tipo Fraunhofer, Littrow doublet, Clark doublet, Oil spaced doublet e Steinheil doublet (due lenti) tentano di mettono a fuoco sullo stesso piano solo tre lunghezze d'onda, tipicamente F (486), d (587) e C (656) nanometri.

Se tripletti come gli APO tentano di mettere a fuoco le righe r (7065), C (656), d (587), e (5460), F (4861), g (4358) e h (4046) nanometri.

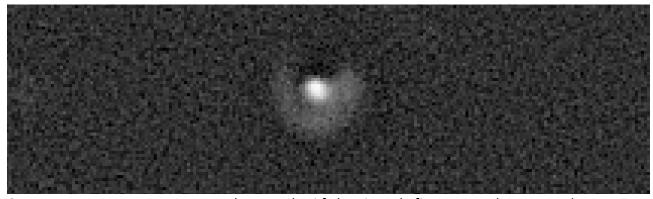
Le misure

Ecco le solite immagini, tipicamente una allineata sulla cometa e una sulle stelle.

A sinistra l'immagine allineata sulla cometa e a destra l'immagine allineata sulle stelle.

Il procedimento di misura è quello descritto all'inizio del manuale che ci consente di arrivare all'ottenimento dei grafici.

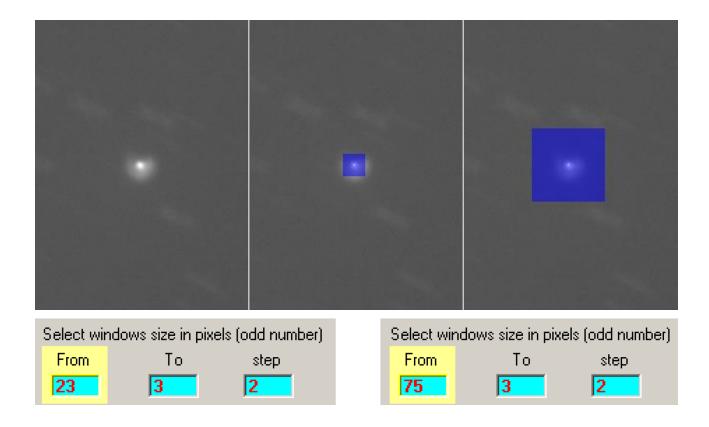
I grafici risultanti.



Il valore trovato di **10258** ed è in linea con i valori Afrho rilevati da altri osservatori per la data del 24/11/2020.

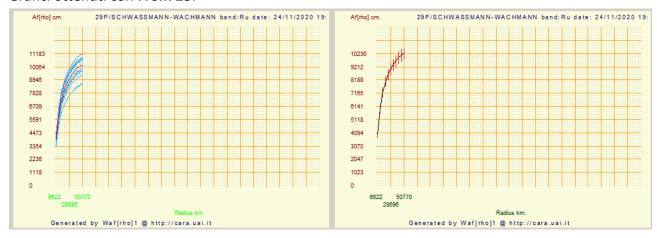
Questa risulta essere la prima misura Afrho eseguita con un CCD a colori. I dati sono buoni, se ulteriori prove dovessero confermare la coerenza dei risultati, sarà possibile aprire questo genere di misure anche a chi pur non possedendo un CCD monocromatico voglia intraprendere questo genere di fotometria.

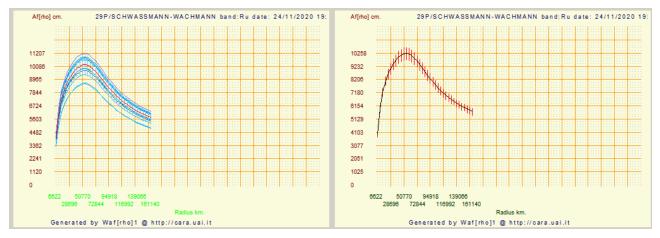
Cometa 29P-Schwassmann-Wachmann-1, Selezionare la finestra corretta.


Misurare questa cometa impone una scelta in [Selected windows size in pixel (odd number)] particolare. Sono: From – To – Step, To e Step sono quasi sempre fissi a 3 e 2, mentre il parametro From viene definito dal programma calcolandolo per una finestra di 50000 Km alla distanza della cometa. Nel caso dell 29P la cometa non ha una forma/curva ben definita, inoltre come visibile la finestra intercetta anche una parte della chioma che è staccata dal nucleo. In pratica semplificando una zona centrale e un anello come da immagine sotto.

Questo cosa comporta, comporta che quando si fa la misura la finestra non legge completamente l'estensione della cometa, con il risultato di avere un grafico incompleto.

Lasciando fare a Winafrho vediamo che per **From** il programma mette **23**. Vediamo dall'immagine sottostante (*riquadro centrale*) come tale valore NON comprenda tutta la cometa.

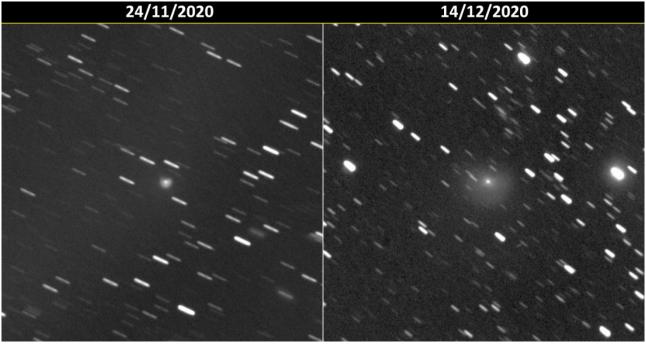

Dobbiamo cambiare questo valore per esempio portandolo a **75**. Ora la cometa è correttamente coperta (*riquadro a destra*) come da immagine sotto.


A questo punto possiamo verificare come i grafici ottenuti con un **From** di **23** siano incompleti e quelli ottenuti con un **From** di **75** decisamente migliori.

Ricordiamo come già accennato in altre parti del manuale che i grafici non dovrebbero mai essere in salita, è segno di una non corretta lettura del Background. Non è questo il caso, qui manca informazione, o meglio manca chiudere correttamente la curva con i valori giusti.

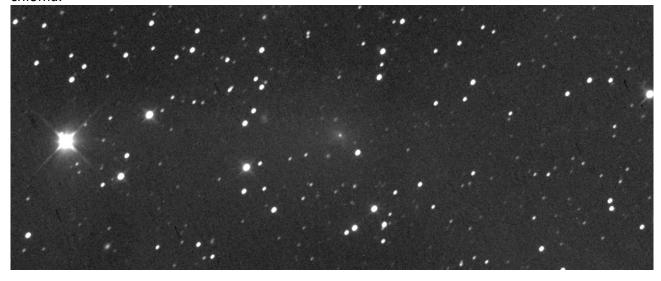
Grafici ottenuti con From 23.

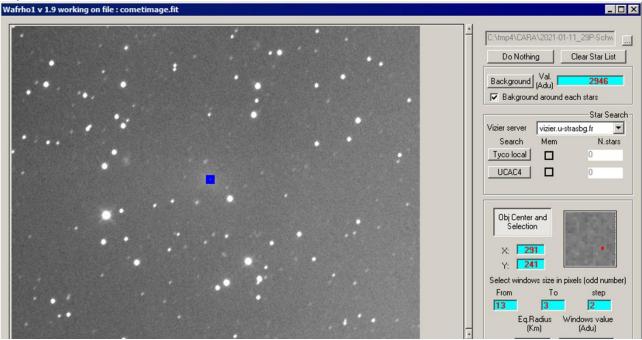
L'incompletezza della curva è evidente, non sappiamo se siamo arrivati alla sommità, e non sappiamo quale valore sarà quello più corretto. Vediamo per confronto i grafici precedenti ottenuti con **From 75**.


I due valori Afrho sono di **10238** per un **From** di **23** e di **10258** per un **From** di **75**. E' una piccola differenza (**1,05** %), ma significativa.

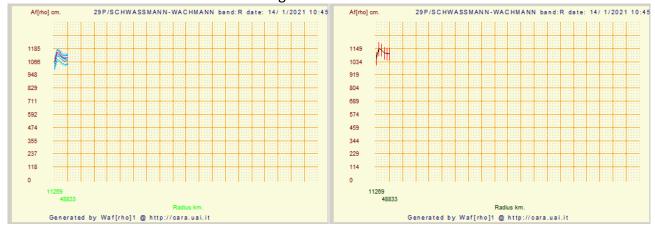
E' sempre bene cercare di ottenere il miglior valore possibile. Già abbiamo a che fare con un insieme di situazioni che aggiungono errori, se possiamo in qualche maniera migliorare le nostre misure sarà a tutto vantaggio nostro e per chi eventualmente dovesse usarle per pubblicazioni.

Cometa 29P-Schwassmann-Wachmann-1, un caso particolare.


Misurare comete non è facile, lo dimostrano le varie appendici in questo manuale. Un caso particolare è la cometa 29P. Cometa che spesso subisce forti variazioni di luminosità (outburst) che la fa variare di diverse magnitudini in breve tempo, per poi tornare alla normalità. Varie immagini mostrano come anche al minimo produca comunque una chioma. Ora misurare una cometa così fatta risulta problematico. La forma non è la solita, un nucleo sempre luminoso e una chioma con vista a noi frontale che in pratica non ci fa mai vedere la coda.


A distanza di 20 giorni la variazione di luminosità e dimensione è evidente. Come detto sopra la forma è particolare e il moto molto lento fanno si che anche utilizzando la sigma per ripulire il campo, vi sarà sempre una contaminazione da stelle di campo.

La sera dell'11 di gennaio 2021 abbiamo ripreso la 29P da Cavezzo. La luminosità è al minimo, ma 1,5 ore di esposizione utilizzando un filtro fotometrico **Rc** mostrano ancora una debole presenza di chioma.

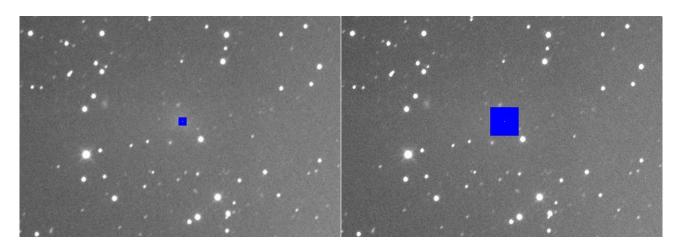

Nel misurare questa immagine mi sono scontrato con alcuni problemi che a prima vista erano irrisolvibili. Raramente succede che sia impossibile misurare e bisogna lasciare perdere.

In questo caso la dimensione della finestra di 50000 Km che Winafrho imposta per le comete era troppo piccola e il grafico risultante non chiaro. Sotto la schermata di Winafrho relativa alle impostazioni di default.

Oltre al valore di background, e alla relativa area che vanno individuati con oculatezza, notiamo come i valori di [From]-[To]-[Step] siamo quelli di default, 13, 3, 2. E' su questi valori che ci concentreremo.

Portando a termine la misura otterremo i grafici sotto.

A sinistra il multiplot e a destra il singolo plot. Già possiamo fare una riflessione, la finestra di misura **NON** copre tutta la chioma della cometa. Non si può essere sicuri che quello misurato sia effettivamente corretto.

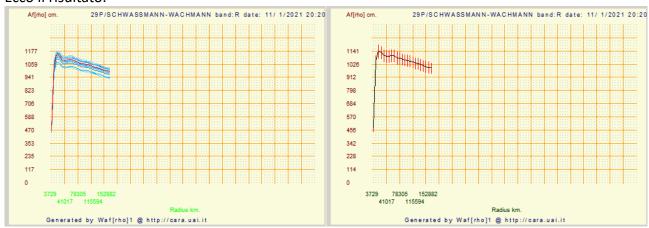

La prima valutazione che si può fare è quella di aumentare la finestra di **[From]** che è stata portata a **26**, esattamente il doppio del valore iniziale e lasciando inalterati gli altri due parametri.

Il risultato non è stato quello che ci si aspetterebbe. A sinistra il multiplot, a destra il singolo plot.



Il grafico è completamente diverso, mostra un andamento discendente senza mostrare la misura nucleare certa.

E' possibile aumentare finestra di **[From]** per vedere se il grafico migliora. E' stato impostato a **45** che sembra il valore che copre tutta la cometa e prende una parte del fondo cielo.


La differenza è evidente, come evidente il cambiamento dei grafici, come sotto.

Possiamo modificare il parametro di [To] per vedere cosa otteniamo in più rispetto a quello che abbiamo ottenuto. Portando il [To] a 2 sostanzialmente non cambia nulla. Il grafico ottenuto è identico a quello ottenuto con [To] a3.

Se invece portiamo il **[To]** a **1** otteniamo una maggior precisione nella zona nucleare. In questo caso non ha molto senso, come già detto in altre parti del manuale vi è una dipendenza dal seeing, quindi in quella zona non abbiamo informazione aggiuntiva.

Ecco il risultato.

E' evidente che bisogna sempre prestare attenzione alle misure che si fanno, le comete hanno forme diverse e per questo fare misure Afrho non è semplice.

Cometa 29P-Schwassmann-Wachmann-1, un primo risultato.

Tecnicamente misurare Afrho su comete non periodiche che arrivano e se ne vanno ha un senso solo per tentare di capire come e cosa succede nella chioma. L'interpretazione è a se stante, non potendo confrontarla con altri passaggi.

Diverso il discorso sulle periodiche, se ne parlò diversi anni fa in una riunione tecnica tenuta all'osservatorio di Cavezzo dove Marco Fulle ci esortò a seguire maggiormente le periodiche. Lavoro facile e che tuttora viene svolto, si riresentano con una frequenza tale da poterne seguire diverse rivoluzioni attorno al Sole. Resistere però all'apparizione di una nuova e magari luminosa cometa è difficile. Detto questo fra tutte le comete periodiche che vengono seguite un posto di rilievo lo ha la 29/P Schwassmann-Wachmann. Cometa che spesso ha aumenti di luminosità che la portano a variazioni di magnitudine notevoli. Essa viene seguita e misurata dal CARA ormai da diversi anni. Recentemente ha subito ha subito due aumenti, uno prima della fine dell'anno 2020 e l'altro all'inizio del 2021. Giannantonio Milani ne ha tratto alcune conclusioni che sono riportate sotto.

Foto delle consistenti variazioni di luminosità alla fine del 2020 (Foto di Paganelli Sergio).

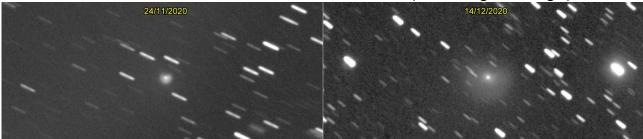
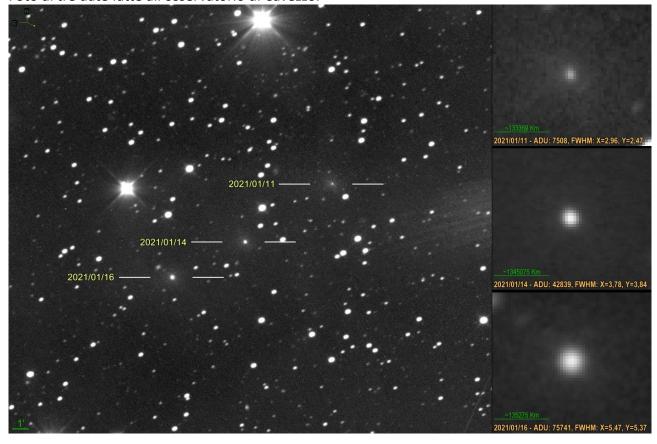



Foto di tre date fatte all'osservatorio di Cavezzo.

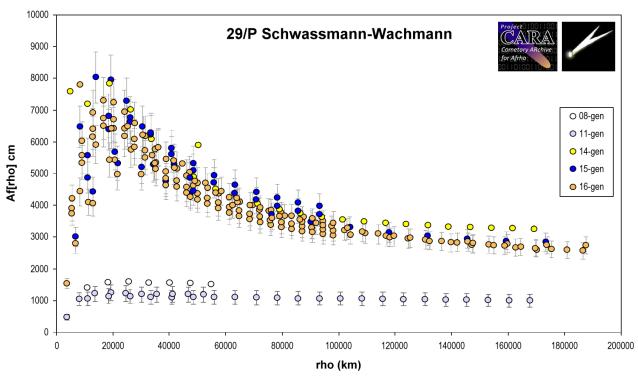

- Email di Giannantonio Milani (20/01/2021), responsabile sezione comete UAI e CARA team.

Grafico preliminare sull'outburst mostrato dalla 29P a metà gennaio 2021. Le osservazioni sono di Andrea Aletti, Federico Bellini, Mauro Facchini, Rolando Ligustri, Giannantonio Milani, Diego Tirelli, altri probabilmente si aggiungeranno. Un evento più modesto di quello di novembre ma interessante e preceduto da un periodo di profonda quiescenza.

Il grafico mostra l'evoluzione del profilo della chioma nel passaggio dalla fase quiescente all'outburst analizzato mediante la quantità Af[rho] in funzione della distanza dal nucleo in chilometri. In fase di attività costante una chioma cometaria dovrebbe apparire in questo grafico con un andamento sostanzialmente rettilineo costante (parallelo all'asse x), come appare nella fase di quiescenza (punti in basso).

Nella fase di outburst si nota un aumento dei valori soprattutto vicino al nucleo che nell'evento ha emesso quasi istantaneamente una nube di polveri. La chioma in questo caso non è più in uno stato di attività costante (stato stazionario) e in realtà Af[rho] perde in gran parte il suo significato, ma permette comunque di evidenziare l'evoluzione del fenomeno.

In letteratura si trovano diversi lavori che analizzano la semi-periodicità degli outburst di questa cometa, un problema complesso e reso ancora più difficile da investigare per la variabilità intrinseca dei vari episodi. Trigo-Rodriguez trova mediamente che la cometa mostra 7.3-7.4 eventi all'anno, e suggerisce come più probabile una periodicità intorno a 50 giorni. Richard Miles ne suggerisce una intorno a 59 giorni (+/- 4). Il sospetto è che questa periodicità possa essere legata alla rotazione del nucleo, quindi sono di fatto dei tentativi di individuare il periodo di rotazione che dunque potrebbe essere intorno a 50-60 giorni. Dall'analisi effettuata dai dati CARA raccolti dal 2003 ad oggi emerge un possibile periodo di 49.3 giorni, sostanzialmente lo stesso di Trigo-Rodriguez. Le differenze non devono stupire perché a causa della notevole variabilità della cometa, a seconda del campione di dati utilizzato si possono evidenziare periodicità un pò diverse. E' da notare che l'ultimo outburst è caduto a circa 56 giorni di distanza da quello di novembre, come ordine di grandezza siamo quindi sostanzialmente in accordo con queste periodicità. Vedremo il prossimo quando cadrà.

NOTE FINALI

INFORMAZIONI

Maggiori informazioni sul metodo Afrho (inglese) sono reperibili sul sito del CARA all'indirizzo: http://cara.uai.it/home altre sono reperibili all'interno di questo manuale

NOTE WINAFRHO

Prima di iniziare è utile sapere che il SW in oggetto è stato realizzato da Roberto Trabatti nell'ambito del progetto CARA con lo scopo di fornire uno strumento utile ad effettuare fotometria di apertura su comete con una procedura standardizzata e mirata a ricavare la quantità Af[rho] (ref. A' Hearn et al. 1980...).

La richiesta va inoltrata all'indirizzo:

http://cara.uai.it/contact

DA SAPERE

Una volta approvata la richiesta verrà attribuito il codice CARA, è un codice che identifica il misuratore all'interno del database delle misure. Ad esempio L'osservatorio di Cavezzo è CAV01.

AVVERTENZE / Clausole di utilizzo dei dati

Tutti i dati che troverai in questo manuale sono protetti da copyright e sono soggetti alle seguenti restrizioni d'uso.

Ci aspettiamo che eventuali utilizzatori potenziali del materiale contattino il Gruppo del Progetto CARA. Ricercatori e insegnanti che usano questi dati per ricerca, insegnamento e altre attività senza fini di lucro possono usarli liberamente ma l'unica cosa che chiediamo è che venga citata la fonte in ogni pubblicazione. Si prega di citare sempre la seguente dichiarazione in qualsiasi materiale pubblicato che faccia uso dei materiali del Progetto CARA:

"Questa pubblicazione fa uso di dati ottenuti dal sito del Progetto Cara (Archivio delle Comete per Astronomi Amatoriali) http://www.cara-project.org"; l'uso commerciale di questi dati è proibito senza averne il permesso. Si prega di contattare i responsabili del Progetto CARA per ulteriori informazioni relative ai diritti di copyright esistenti in merito. Scienziati e ricercatori che useranno i dati prelevati da questo sito sono pregati di includere in modo opportuno questa dichiarazione in ogni loro pubblicazione che contenga tali dati.

CONTRIBUTI

Persone che hanno fornito immagini e/o spunti di riflessione.

Mauro Facchini, Daniele Losi, Giannantonio Milani, Roberto Trabatti, Adriano Valvasori, Daniele Carosati, Carmen Elentari Perella, Gianni Galli (che si è letto tutto il manuale suggerendo modifiche e chiarimenti).

Dalle liste: COMETE-UAI CARA, ASTROIDI-UAI e Wapp, - spunti di riflessione.

IMMAGINI UTILIZZATE

CAVEZZO (107)	DANIELE CAROSATI	ROLANDO LIGUSTRI	GAMP (104) P.Bacci, M.Maetripieri
C/2011 J2 - Linear	C/2014 Q2 – Lovejoy	2I/Borisov	A/2018 DO4
C/2012 R1 - Lovejoy	C/2017 T2 - PanSTARRS		C/2017 T2 - PanSTARRS
C/2015 V2 – Johnson	46P - Wirtanen		
C/2015 F4 – Jaques	C/2020 F3 - NEOWISE		
C/2017 T2 - PanSTARRS			
C/2018 Y1 – Iwamoto			
C/2017 E4 - Lovejoy			
C/2014 Q2 – Lovejoy			
C/2017 O1 - ASASSN			
C/2014 Q2 – Lovejoy			
copertina – 2015-01-26			
C/2014 S2 - PanSTARRS			
41P - Tuttle-Giacobini-Kresak			
37P - Forbes			
123P - West-Hartley			
38P - Stephan-Oterma			
46P - Wirtanen			
6478 - Gault			
2I/Borisov			
C/1995 O1 – Hale-Bopp			
C/2020 F3 - NEOWISE			
29P-Schwassmann-Wachmann			
CELADO (K51)	LIVERPOL telescope	Oss. Schiaparelli (204)	Oss. AGEROLA (L07)
G.Favero, M.Facchini	E. Guido	L. Buzzi, A. Aletti	A. Catapano
C/2013 X1 - PanSTARRS	C/2019 Y4 - ATLAS	Flat	C/2017 T2 - PanSTARRS
		C/2020 F3 - NEOWISE	C/2020 F3 – NEOWISE
GIANNANTONIO MILANI	SERGIO PAGANELLI		
C/2020 F3 - NEOWISE	29P-Schwassmann- Wachmann		

P.Bacci = Paolo Bacci, M.Maetripieri = Martina Maestripieri, E.Guido = Ernesto Guido,
 G.Favero = Giancarlo Favero, M.Facchini = Mauro Facchini, L.Buzzi = Luca Buzzi,
 A.Catapano = Antonio Catapano, A.ALETTI = Andrea Aletti, D.Carosati = Daniele Carosati
 G.Milani = Giannantonio Milani

FAQ, (domande frequenti)

Perché la mia misura Af[rho] non è come dovrebbe essere, dove sbaglio?. Dare una risposta non è facile, le motivazioni sono tantissime, vediamo alcune.

Il pretrattamento non è come dovrebbe essere.

Indipendentemente dal sw che si utilizza le immagini riprese devono avere lo stesso tempo di esposizione del Dark, la stessa temperatura di ripresa, al Flat deve essere sottratto il suo dark fatto allo stesso tempo di esposizione e temperatura.

L'immagine pretrattata non ha il campo uniforme.

Normalmente è dovuto al fatto che il Flat NON è stato fatto correttamente, la spia la fanno gli anelli di polvere che non si eliminano. Può anche succedere che la polvere sparisca ma il campo risulti affetto da gradienti che NON sono di tipo celeste, come la vignettatura dovuta a raccordi non sufficientemente grandi da lasciare passare tutto il flusso luminoso verso il CCD. Per celeste intendo gradienti che sono dovuti al cielo, pensiamo a quando si riprende molto bassi sull'orizzonte o con la Luna.

Ho allineato la cometa ma il nucleo non è puntiforme.

Ci sono diverse cause a ciò, una riguarda il sw Astroart che solo dalla versione 7 si può scegliere se utilizzare l'allineamento geocentrico e NON geocentrico (allineamento tramite gli elementi orbitali). Questo fatto a volte faceva si che per oggetti vicini alla Terra il nucleo della cometa o asteroide non fossero puntiformi. Altro caso sono l'uso di elementi orbitali vecchi. Il consiglio è quello di aggiornare sempre gli elementi ogni sera che si riprende.

Il rapporto segnale rumore mi sembra insufficiente.

Se dopo aver pretrattato correttamente un certo numero di immagini il rapporto segnale rumore sembra essere insufficiente ad ottenere una buona misura, la causa potrebbe essere nella poca dinamica (ADU) della cometa da misurare rispetto al fondo cielo. Inutile insistere nella misura.

Mi sono accorto che le condizioni del cielo sono variate durante la notte.

La casistica ci dice che variazioni anche piccole della trasparenza, formazioni di foschie, nebbie e nuvole (strato cirri) del cielo possono portare a misure incoerenti. Se possibile confrontarsi con altri che in quella sera possono aver ripreso la stessa cometa.

Ho ottenuto un grafico di difficile spiegazione/interpretazione.

Nonostante i cataloghi online Winafrho potrebbe aver trovato poche stelle di confronto di tipo solare, magari sature e con indici di colore al di fuori dell'intervallo consigliato, anche utilizzando il catalogo Tyco. E' dannoso e inutile insistere nel misurare e tentare di ottenere un grafico che palesemente non sarà corretto.

Non riesco a vedere le immagini, o bianche o nere in Winafrho.

Winafrho legge SOLO FIT e/o FITS a 16 bit interi, cioè da 0 a 65535 livelli. Se si usa Astroart potrebbe succedere che le immagini vengano salvate con una dinamica maggiore, basta un adu in più o in meno di 16bit (65535 livelli) che Astroart si adatta salvando una immagine a 32bit interi.

Per ovviare a questo inconveniente è possibile con Astroart crearsi una macro che azzeri i valori fuori scala con i comandi di [Clamp min 0,0] e [Clamp max 65535,65535]. Fatto questo salviamo l'immagine che potrà essere caricata in Winafrho senza problemi. Se si usano altri software controllare nei menù l'esistenza di operazioni simili.

E' possibile avere una lista ufficiale dei file di installati per controllare la mia installazione?

Se una volta installato il Winafrho vogliamo essere sicuri dei file installati possiamo fare un confronto con la lista sottostante, ove è riportato l'elenco dei file.

L'elenco dei file:

138.056	24/09/2018	18 : 57
140.096	24/09/2018	18 : 57
1.217.192	24/09/2018	18 : 57
31.616	24/09/2018	18 : 57
35.712	24/09/2018	18 : 57
370	24/09/2018	18 : 57
4.397.384	24/09/2018	18 : 57
36.176	24/09/2018	18 : 57
36.176	24/09/2018	18 : 57
64.336	24/09/2018	18 : 57
55.120	24/09/2018	18 : 57
63.824	24/09/2018	18 : 57
64.336	24/09/2018	18 : 57
62.288	19/02/2011	23:03
43.856	24/09/2018	18 : 57
43.344	24/09/2018	18 : 57
60.752	24/09/2018	18 : 57
4.422.992	24/09/2018	18 : 57
81.744	24/09/2018	18 : 57
81.744	24/09/2018	18 : 57
13.136	24/09/2018	18 : 57
259.464	24/09/2018	18 : 57
644.400	24/09/2018	18 : 57
166.200	24/09/2018	18 : 57
421.200	24/09/2018	18 : 57
773.968	24/09/2018	18 : 57
2.089	24/09/2018	18 : 57
161.078	24/09/2018	18 : 57
146.466	22/11/2019	11:33
1.125.888	24/09/2018	18 : 57
37.888	24/09/2018	18 : 57
	140.096 1.217.192 31.616 35.712 370 4.397.384 36.176 64.336 55.120 63.824 64.336 62.288 43.856 43.344 60.752 4.422.992 81.744 81.744 13.136 259.464 644.400 166.200 421.200 773.968 2.089 161.078 146.466 1.125.888	138.056 24/09/2018 140.096 24/09/2018 31.616 24/09/2018 35.712 24/09/2018 370 24/09/2018 36.176 24/09/2018 36.176 24/09/2018 36.176 24/09/2018 64.336 24/09/2018 65.120 24/09/2018 63.824 24/09/2018 64.336 24/09/2018 64.336 24/09/2018 63.824 24/09/2018 64.336 24/09/2018 64.336 24/09/2018 62.288 19/02/2011 43.856 24/09/2018 43.344 24/09/2018 81.744 24/09/2018 81.744 24/09/2018 81.744 24/09/2018 81.744 24/09/2018 13.136 24/09/2018 13.136 24/09/2018 259.464 24/09/2018 13.136 24/09/2018 13.136 24/09/2018 259.464 24/09/2018 13.136 24/09/2018 259.464 24/09/2018 259.464 24/09/2018 13.136 24/09/2018 13.136 24/09/2018 259.464 24/09/2018 13.136 24/09/2018 13.136 24/09/2018 13.136 24/09/2018 13.136 24/09/2018 259.464 24/09/2018 259.464 24/09/2018 166.200 24/09/2018 166.200 24/09/2018 173.968 24/09/2018 161.078 24/09/2018 146.466 22/11/2019 1.125.888 24/09/2018

Quali bande fotometriche devo usare?.

Se le immagini vengono fatte con il filtro (R) (Johnson-Cousins), allora in Winafrho scelgo la banda - R. Se le immagini vengono fatte con il filtro (I) (Cousins), allora in Winafrho scelgo la banda - I. Se le immagini vengono fatte con il filtro a banda stretta da 647 nm/FWHM 10 nm, allora in Winafrho scelgo la banda - S (Vilnius).

Se le immagini vengono fatte **SENZA filtro** (*Clear*), allora se Chip **Kodak** in Winafrho scelgo la banda - **Ru** - , se Chip **Sony** scelgo la banda - **Vu** -. Ciò è dovuto alla diversa sensibilità spettrale dei due chip. Se le immagini vengono fatte con il filtro (r) (*SLOAN*), allora in Winafrho scelgo la banda - **R**. Se le immagini vengono fatte con il filtro (V) fotometrico allora in Winafrho scelgo la banda - V.

LINK DI COMETE UTILI.

http://www.cbat.eps.harvard.edu/cbet/RecentCBETs.html	
http://www.cbat.eps.narvard.edu/cbet/Necentoble 15.html	Effemeridi
http://www.minorplanetcenter.net/mpec/RecentMPECs.html	Effemeridi
http://minorplanetcenter.net/iau/MPCORB.html	Effemeridi
https://minorplanetcenter.net//iau/NEO/pccp_tabular.html	Effemeridi
nttps://ssd.jpl.nasa.gov/sbdb.cgi#top	Effemeridi
http://astro.vanbuitenen.nl/home	Effemeridi
nttp://cara.uai.it/	Sito ufficiale CARA
http://www.heavens-above.com/Comets.aspx?lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT	
http://theskylive.com/comets	
http://astro.xchris.net/dsa/	
http://cometography.com/	
nttp://www.calsky.com/cs.cgi	
nttp://kometen.fg-vds.de/ephdate.htm	
nttp://www.ast.cam.ac.uk/~jds/	
http://cometchasing.skyhound.com/	
nttp://hills-observatory.org/index.htm	
https://remanzacco.blogspot.com/	
https://britastro.org/cometobs/	
http://www.astronomie.be/erik.bryssinck/index.html	
http://www.aerith.net/index.htm	Seiichi Yoshida (curve di luce)
https://cobs.si/	Database
nttp://www.psi.edu/research/cometimen	Filtri cometari (MCM, RW)
http://nova.astrometry.net/	Ricerca coordinate
Designazione delle comete:	
nttp://www.icq.eps.harvard.edu/cometnames.html	
nttps://minorplanetcenter.net//iau/lists/CometResolution.html	
Ricerca coordinate e effemeridi:	
https://projectpluto.com/ephem.htm	